Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(11): 6707-6717, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38738637

RESUMO

The abnormal expansion of GGGGCC/GGCCCC hexanucleotide repeats (HR) in C9orf72 is associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Structural polymorphisms of HR result in the multifactorial pathomechanism of ALS/FTD. Consequently, many ongoing studies are focused at developing therapies targeting pathogenic HR RNA. One of them involves small molecules blocking sequestration of important proteins, preventing formation of toxic nuclear foci. However, rational design of potential therapeutics is hindered by limited number of structural studies of RNA-ligand complexes. We determined the crystal structure of antisense HR RNA in complex with ANP77 ligand (1.1 Šresolution) and in the free form (0.92 and 1.5 Šresolution). HR RNA folds into a triplex structure composed of four RNA chains. ANP77 interacted with two neighboring single-stranded cytosines to form pseudo-canonical base pairs by adopting sandwich-like conformation and adjusting the position of its naphthyridine units to the helical twist of the RNA. In the unliganded structure, the cytosines formed a peculiar triplex i-motif, assembled by trans C•C+ pair and a third cytosine located at the Hoogsteen edge of the C•C+ pair. These results extend our knowledge of the structural polymorphisms of HR and can be used for rational design of small molecules targeting disease-related RNAs.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Demência Frontotemporal , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Humanos , Ligantes , RNA Antissenso/genética , RNA Antissenso/química , RNA Antissenso/metabolismo , Conformação de Ácido Nucleico , Expansão das Repetições de DNA/genética , Cristalografia por Raios X , Modelos Moleculares
2.
RNA ; 29(5): 630-643, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36653114

RESUMO

p53 protein is a key regulator of cellular homeostasis by coordinating the framework of antiproliferative pathways as a response to various stress factors. Although the main mechanism of stress-dependent induction of p53 protein relies on post-translational modifications influencing its stability and activity, a growing amount of evidence suggests that complex regulation of p53 expression occurs also at the mRNA level. This study explores structural determinants of long-range RNA-RNA interactions in p53 mRNA, crucial for stress-dependent regulation of p53 protein translation. We demonstrate that the 8-nt bulge motif plays a key structural role in base-pairing of complementary sequences from the 5' and 3' untranslated regions of p53 mRNA. We also show that one of the p53 translation regulators, nucleolin, displays an RNA chaperone activity and facilitates the association of sequences involved in the formation of long-range interactions in p53 mRNA. Nucleolin promotes base-pairing of complementary sequences through the bulge motif, because mutations of this region reduce or inhibit pairing while compensatory mutations restore this interaction. Mutational analysis of nucleolin reveals that all four RNA recognition motifs are indispensable for optimal RNA chaperone activity of nucleolin. These observations help to decipher the unique mechanism of p53 protein translation regulation pointing to bulge motif and nucleolin as the critical factors during intramolecular RNA-RNA recognition in p53 mRNA.


Assuntos
Fosfoproteínas , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas/genética , Nucleolina
3.
Nucleic Acids Res ; 49(21): 12535-12539, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34107036

RESUMO

Explaining the origin of the homochirality of biological molecules requires a mechanism of disrupting the natural equilibrium between enantiomers and amplifying the initial imbalance to significant levels. Authors of existing models have sought an explanation in the parity-breaking weak nuclear force, in some selectively acting external factor, or in random fluctuations that subsequently became amplified by an autocatalytic process. We have obtained crystals in which l- and d-enantiomers of short RNA duplexes assemble in an asymmetric manner. These enantiomers make different lattice contacts and have different exposures to water and metal ions present in the crystal. Apparently, asymmetry between enantiomers can arise upon their mutual interactions and then propagate via crystallization. Asymmetric racemic compounds are worth considering as possible factors in symmetry breaking and enantioenrichment that took place in the early biosphere.


Assuntos
Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Ribossômico 5S/química , RNA/química , Sequência de Bases , Cristalização , Cristalografia por Raios X , Modelos Moleculares , RNA/genética , RNA Bacteriano/genética , RNA Ribossômico 5S/genética , Estereoisomerismo , Thermus/genética
4.
Nucleic Acids Res ; 47(20): 10906-10913, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31566242

RESUMO

The trinucleotide repeat expansion disorders (TREDs) constitute of a group of >40 hereditary neurodegenerative human diseases associated with abnormal expansion of repeated sequences, such as CAG repeats. The pathogenic factor is a transcribed RNA or protein whose function in the cell is compromised. The disorders are progressive and incurable. Consequently, many ongoing studies are oriented at developing therapies. We have analyzed crystal structures of RNA containing CAG repeats in complex with synthetic cyclic mismatch-binding ligands (CMBLs). The models show well-defined interactions between the molecules in which the CMBLs mimic nucleobases as they form pseudo-canonical base pairs with adenosine residues and engage in extensive stacking interactions with neighboring nucleotides. The binding of ligands is associated with major structural changes of the CAG repeats, which is consistent with results of biochemical studies. The results constitute an early characterization of the first lead compounds in the search for therapy against TREDs. The crystallographic data indicate how the compounds could be further refined in future biomedical studies.


Assuntos
RNA/genética , Expansão das Repetições de Trinucleotídeos/genética , Adenosina/metabolismo , Sequência de Bases , Ligantes , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , RNA/química , Solventes , Temperatura , Raios Ultravioleta
5.
Viruses ; 9(4)2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28394277

RESUMO

The long-terminal repeat retrotransposon Ty1 is the most abundant mobile genetic element in many Saccharomyces cerevisiae isolates. Ty1 retrotransposons contribute to the genetic diversity of host cells, but they can also act as an insertional mutagen and cause genetic instability. Interestingly, retrotransposition occurs at a low level despite a high level of Ty1 RNA, even though S. cerevisiae lacks the intrinsic defense mechanisms that other eukaryotes use to prevent transposon movement. p22 is a recently discovered Ty1 protein that inhibits retrotransposition in a dose-dependent manner. p22 is a truncated form of Gag encoded by internally initiated Ty1i RNA that contains two closely-spaced AUG codons. Mutations of either AUG codon compromise p22 translation. We found that both AUG codons were utilized and that translation efficiency depended on the Ty1i RNA structure. Structural features that stimulated p22 translation were context dependent and present only in Ty1i RNA. Destabilization of the 5' untranslated region (5' UTR) of Ty1i RNA decreased the p22 level, both in vitro and in vivo. Our data suggest that protein factors such as Gag could contribute to the stability and translational activity of Ty1i RNA through specific interactions with structural motifs in the RNA.


Assuntos
Produtos do Gene gag/metabolismo , Biossíntese de Proteínas , RNA Fúngico/metabolismo , Recombinação Genética , Retroelementos , Saccharomyces cerevisiae/genética
6.
Nucleic Acids Res ; 45(10): e92, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28334744

RESUMO

An RNA hairpin is an essential structural element of RNA. Hairpins play crucial roles in gene expression and intermolecular recognition but are also involved in the pathogenesis of some congenital diseases. Structural studies of the hairpin motifs are impeded by their thermodynamic instability, as they tend to unfold to form duplexes, especially at high concentrations required for crystallography or nuclear magnetic resonance spectroscopy. We have elaborated techniques to stabilize the RNA hairpins by linking the free ends of the RNA strand at the base of the hairpin stem. One method involves stilbene diether or hexaethylene glycol linkers and circularization by T4 RNA ligase. Another method uses click chemistry to stitch the RNA ends with a triazole linker. Both techniques are efficient and easy to perform. They should be useful in making stable, biologically relevant RNA constructs for structural studies.


Assuntos
Etilenoglicóis/química , Sequências Repetidas Invertidas , RNA Ligase (ATP)/química , RNA/química , Triazóis/química , Proteínas Virais/química , Bacteriófago T4/química , Pareamento de Bases , Sequência de Bases , Química Click , Ciclização , Éteres/química , Conformação de Ácido Nucleico , RNA/genética , RNA Ligase (ATP)/genética , Estabilidade de RNA , Termodinâmica , Proteínas Virais/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-28130835

RESUMO

All RNA molecules possess a 'propensity' to fold into complex secondary and tertiary structures. Although they are composed of only four types of nucleotides, they show an enormous structural richness which reflects their diverse functions in the cell. However, in some cases the folding of RNA can have deleterious consequences. Aberrantly expanded, repeated RNA sequences can exhibit gain-of-function abnormalities and become pathogenic, giving rise to many incurable neurological diseases. Most RNA repeats form long hairpin structures whose stem consists of noncanonical base pairs interspersed among Watson-Crick pairs. The expanded hairpins have an ability to sequester important proteins and form insoluble nuclear foci. The RNA pathology, common to many repeat disorders, has drawn attention to the structures of the RNA repeats. In this review, we summarize secondary structure probing and crystallographic studies of disease-related RNA repeat sequences. We discuss the unique structural features which can contribute to the pathogenic properties of the repeated runs. In addition, we present the newest reports concerning structural data linked to therapeutic approaches. WIREs RNA 2017, 8:e1412. doi: 10.1002/wrna.1412 For further resources related to this article, please visit the WIREs website.


Assuntos
Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , RNA/genética , Sequências Repetitivas de Ácido Nucleico , Animais , Humanos
8.
Mob Genet Elements ; 6(2): e1154637, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27141325

RESUMO

The long terminal repeat (LTR) and non-LTR retrotransposons comprise approximately half of the human genome, and we are only beginning to understand their influence on genome function and evolution. The LTR retrotransposon Ty1 is the most abundant mobile genetic element in the S. cerevisiae reference genome. Ty1 replicates via an RNA intermediate and shares several important structural and functional characteristics with retroviruses. However, unlike retroviruses Ty1 retrotransposition is not infectious. Retrotransposons integrations can cause mutations and genome instability. Despite the fact that S. cerevisiae lacks eukaryotic defense mechanisms such as RNAi, they maintain a relatively low copy number of the Ty1 retrotransposon in their genomes. A novel restriction factor derived from the C-terminal half of Gag (p22/p18) and encoded by internally initiated transcript inhibits retrotransposition in a dose-dependent manner. Therefore, Ty1 evolved a specific GAG organization and expression strategy to produce products both essential and antagonistic for retrotransposon movement. In this commentary we discuss our recent research aimed at defining steps of Ty1 replication influenced by p22/p18 with particular emphasis on the nucleic acid chaperone functions carried out by Gag and the restriction factor.

9.
Retrovirology ; 13: 18, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26987314

RESUMO

BACKGROUND: The Gag polyprotein is a multifunctional regulator of retroviral replication and major structural component of immature virions. The nucleic acid chaperone (NAC) activity is considered necessary to retroviral Gag functions, but so far, NAC activity has only been confirmed for HIV-1 and RSV Gag polyproteins. The nucleocapsid (NC) domain of Gag is proposed to be crucial for interactions with nucleic acids and NAC activity. The major function of matrix (MA) domain is targeting and binding of Gag to the plasma membrane but MA can also interact with RNA and influence NAC activity of Gag. Here, we characterize RNA binding properties and NAC activity of HIV-2 MA and Gag, lacking p6 domain (GagΔp6) and discuss potential contribution of NC and MA domains to HIV-2 GagΔp6 functions and interactions with RNA. RESULTS: We found that HIV-2 GagΔp6 is a robust nucleic acid chaperone. HIV-2 MA protein promotes nucleic acids aggregation and tRNA(Lys3) annealing in vitro. The NAC activity of HIV-2 NC is affected by salt which is in contrast to HIV-2 GagΔp6 and MA. At a physiological NaCl concentration the tRNA(Lys3) annealing activity of HIV-2 GagΔp6 or MA is higher than HIV-2 NC. The HIV-2 NC and GagΔp6 show strong binding to the packaging signal (Ψ) of HIV-2 RNA and preference for the purine-rich sequences, while MA protein binds mainly to G residues without favouring Ψ RNA. Moreover, HIV-2 GagΔp6 and NC promote HIV-2 RNA dimerization while our data do not support MA domain participation in this process in vitro. CONCLUSIONS: We present that contrary to HIV-1 MA, HIV-2 MA displays NAC activity and we propose that MA domain may enhance the activity of HIV-2 GagΔp6. The role of the MA domain in the NAC activity of Gag may differ significantly between HIV-1 and HIV-2. The HIV-2 NC and MA interactions with RNA are not equivalent. Even though both NC and MA can facilitate tRNA(Lys3) annealing, MA does not participate in RNA dimerization in vitro. Our data on HIV-2 indicate that the role of the MA domain in the NAC activity of Gag differs not only between, but also within, retroviral genera.


Assuntos
HIV-2/fisiologia , Chaperonas Moleculares/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Concentração Osmolar , RNA de Transferência de Lisina/metabolismo , Cloreto de Sódio/metabolismo
10.
Curr Genet ; 62(2): 321-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26650614

RESUMO

Retrotransposons and retroviral insertions have molded the genomes of many eukaryotes. Since retroelements transpose via an RNA intermediate, the additive nature of the replication cycle can result in massive increases in copy number if left unchecked. Host organisms have countered with several defense systems, including domestication of retroelement genes that now act as restriction factors to minimize propagation. We discovered a novel truncated form of the Saccharomyces Ty1 retrotransposon capsid protein, dubbed p22 that inhibits virus-like particle (VLP) assembly and function. The p22 restriction factor expands the repertoire of defense proteins targeting the capsid and highlights a novel host-parasite strategy. Instead of inhibiting all transposition by domesticating the restriction gene as a distinct locus, Ty1 and budding yeast may have coevolved a relationship that allows high levels of transposition when Ty1 copy numbers are low and progressively less transposition as copy numbers rise. Here, we offer a perspective on p22 restriction, including its mode of expression, effect on VLP functions, interactions with its target, properties as a nucleic acid chaperone, similarities to other restriction factors, and future directions.


Assuntos
Capsídeo , Retroelementos , Saccharomyces cerevisiae/genética , Animais , Capsídeo/metabolismo , Dosagem de Genes , Regulação Fúngica da Expressão Gênica , Humanos , Saccharomyces cerevisiae/metabolismo
11.
Nucleic Acids Res ; 43(15): 7414-31, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26160887

RESUMO

Ty1 Gag comprises the capsid of virus-like particles and provides nucleic acid chaperone (NAC) functions during retrotransposition in budding yeast. A subgenomic Ty1 mRNA encodes a truncated Gag protein (p22) that is cleaved by Ty1 protease to form p18. p22/p18 strongly inhibits transposition and can be considered an element-encoded restriction factor. Here, we show that only p22 and its short derivatives restrict Ty1 mobility whereas other regions of GAG inhibit mobility weakly if at all. Mutational analyses suggest that p22/p18 is synthesized from either of two closely spaced AUG codons. Interestingly, AUG1p18 and AUG2p18 proteins display different properties, even though both contain a region crucial for RNA binding and NAC activity. AUG1p18 shows highly reduced NAC activity but specific binding to Ty1 RNA, whereas AUG2p18 shows the converse behavior. p22/p18 affects RNA encapsidation and a mutant derivative defective for RNA binding inhibits the RNA chaperone activity of the C-terminal region (CTR) of Gag-p45. Moreover, affinity pulldowns show that p18 and the CTR interact. These results support the idea that one aspect of Ty1 restriction involves inhibition of Gag-p45 NAC functions by p22/p18-Gag interactions.


Assuntos
Produtos do Gene gag/metabolismo , Retroelementos , Códon de Iniciação , DNA Viral/metabolismo , Dimerização , Produtos do Gene gag/biossíntese , Produtos do Gene gag/química , Produtos do Gene gag/genética , HIV-1/genética , Ligação Proteica , Biossíntese de Proteínas , RNA/metabolismo , Capuzes de RNA/metabolismo , RNA de Transferência de Metionina/metabolismo , Saccharomyces/genética
12.
Biochim Biophys Acta ; 1840(6): 1782-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24508122

RESUMO

BACKGROUND: Bacitracin is a polypeptide antibiotic active against Gram-positive bacterial strains. Its mechanism of action postulates disturbing the cell wall synthesis by inhibiting dephosphorylation of the lipid carrier. We have discovered that bacitracin induces degradation of nucleic acids, being particularly active against RNA. METHODS: In the examination of the nucleolytic activity of bacitracin several model RNA and DNA oligomers were used. The oligomers were labeled at their 5' ends with (32)P radioisotope and following treatment with bacitracin the cleavage sites and efficiency were determined. RESULTS AND CONCLUSIONS: Bacitracin induces degradation of RNA at guanosine residues, preferentially in single-stranded RNA regions. Bacitracin is also able to degrade DNA to some extent but comparable effects to those observed with RNA require its 10-fold higher concentration. The sites of degradation in DNA are very infrequent and preferentially occur near cytidine residues. Free radicals are not involved in the reaction, and which probably proceeds via a hydrolytic mechanism. The phosphate groups at the cleavage sites are present at the 3' ends of RNA products and at the 5' ends of DNA fragments. Importantly, the presence of EDTA does not influence RNA degradation but completely inhibits the degradation of DNA. For DNA degradation divalent metal ions like Mg(2+), Mn(2+) or Zn(2+) are absolutely necessary. GENERAL SIGNIFICANCE: The ability of bacitracin to degrade nucleic acids via a hydrolytic mechanism was a surprising observation, and it is of interest whether these properties can contribute to its mechanisms of action during antibiotic treatment.


Assuntos
Antibacterianos/farmacologia , Bacitracina/farmacologia , DNA/química , RNA/química , Hidrólise
13.
FEBS J ; 280(11): 2652-64, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23527582

RESUMO

The interactions of selected antibiotics with the trans-acting antigenomic delta ribozyme were mapped. Ribozyme with two oligonucleotide substrates was used, one uncleavable with deoxycytidine at the cleavage site, mimicking the initial state of ribozyme, and the other with an all-RNA substrate mimicking, after cleavage, the product state. Mapping was performed with a set of RNA structural probing methods: Pb(2+) -induced cleavage, nuclease digestion, and the selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) approach. The experimental results combined with molecular modeling revealed different binding sites for neomycin B, amikacin and actinomycin D inside the ribozyme structure. Neomycin B, an aminoglycoside antibiotic, which strongly inhibited the catalytic properties of delta ribozyme, was bound to the pocket formed by the P1 stem, the P1.1 pseudoknot, and the J4/2 junction. Amikacin showed less effective binding to the ribozyme catalytic core, resulting in weak inhibition. Complexes of these aminoglycosides with Cu(2+) ions were bound to the same ribozyme regions, but more effectively, showing lower Kd values. On the other hand, the Cu(2+) complex of the cyclopeptide antibiotic actinonomycin D was preferentially intercalated into the P2 and the P4 double-stranded region, and was three times more potent in ribozyme inhibition than the free antibiotic. In addition, some differences in SHAPE reactivities between the ribozyme forms containing all-RNA and deoxycytidine-modified substrates in the J4/2 region were detected, pointing to different ribozyme conformations before and after the cleavage event.


Assuntos
Antibacterianos/química , Antibacterianos/metabolismo , Vírus Delta da Hepatite/enzimologia , RNA Catalítico/química , RNA Catalítico/metabolismo , Amicacina/química , Amicacina/metabolismo , Sequência de Bases , Simulação por Computador , Cobre/metabolismo , Dactinomicina/química , Dactinomicina/metabolismo , Framicetina/química , Framicetina/metabolismo , Vírus Delta da Hepatite/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Catalítico/genética
14.
RNA Biol ; 10(11): 1726-40, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24418891

RESUMO

Recently, we have determined the secondary structure of the 5'-terminal region of p53 mRNA that starts from the P1 transcription initiation site and includes two major translation initiation codons responsible for the synthesis of p53 and ΔNp53 isoform. Here, we showed that when this region was extended into 5' direction to the P0 transcription start site, the two characteristic hairpin motifs found in this region were preserved. Moreover, the presence of alternatively spliced intron 2 did not interfere with the formation of the larger hairpin in which the initiation codon for p53 was embedded. The impact of the different variants of p53 5'-terminal region, which start at P0 or P1 site and end with the initiation codon for p53 or ΔNp53, on the translation of luciferase reporter protein was compared. Strikingly, the efficiency of translation performed in rabbit reticulocyte lysate differed by two orders of magnitude. The toe-printing analysis was also applied to investigate the formation of the ribosomal complex on the model mRNA constructs. The relative translation efficiencies in HeLa and MCF-7 cells were similar to those observed in the cell lysate, although some differences were noted in comparison with cell-free conditions. The results were discussed in terms of the role of secondary structure folding of the 5'-terminal region of p53 mRNA in translation and possible modes of p53 and ΔNp53 translation initiation.


Assuntos
Regiões 5' não Traduzidas/fisiologia , Iniciação Traducional da Cadeia Peptídica/fisiologia , Isoformas de RNA/metabolismo , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Processamento Alternativo , Animais , Códon de Iniciação , Células HeLa , Humanos , Íntrons , Células MCF-7 , Modelos Genéticos , Conformação Molecular , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Dobramento de RNA , RNA Mensageiro/genética , Coelhos
15.
Methods Mol Biol ; 941: 99-111, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23065556

RESUMO

During in vitro run-off transcription with T7 RNA polymerase, transcripts with heterogenous 3' ends are commonly synthesized. Here, we describe an efficient procedure for correct processing of transcript 3' ends with the use of antigenomic HDV ribozyme. The procedure involves the extension of nascent transcripts with seven nucleotides complementary to the ribozyme's recognition site and, subsequently, the removal of those nucleotides with the HDV ribozyme acting in trans. Sufficient reaction rates and final cleavage extents of approx. 90% can be obtained with just twofold excess of the ribozyme. The highest concentration of RNA substrate suggested for practical applications turns out to be 3 µM. The procedure is an alternative to the use of ribozymes as cis-cleaving autocatalytic cassettes attached to transcript 3' ends.


Assuntos
Técnicas Genéticas , Vírus Delta da Hepatite/enzimologia , RNA Catalítico/metabolismo , Sequência de Bases , DNA Complementar/biossíntese , DNA Complementar/genética , Técnicas de Amplificação de Ácido Nucleico , Clivagem do RNA , RNA Mensageiro/biossíntese , RNA Mensageiro/química , RNA Mensageiro/genética , Transcrição Reversa
16.
Biochemistry ; 50(33): 7080-92, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21770379

RESUMO

The p53 protein is one of the major factors involved in cell cycle control, DNA repair, and induction of apoptosis. We determined the secondary structure of the 5'-terminal region of p53 mRNA that includes two major translation initiation codons AUG1 and AUG2, responsible for the synthesis of p53 and its N-truncated isoform ΔN-p53. It turned out that a part of the coding sequence was involved in the folding of the 5' untranslated region for p53. The most characteristic structural elements in the 5'-terminal region of p53 mRNA were two hairpin motifs. In one of them, the initiation codon AUG1 was embedded while the other hairpin has been earlier shown to bind the Mdm2 protein. Alternative mechanisms of p53 mRNA translation initiation were investigated in vitro using model mRNA templates. The results confirmed that initiation from AUG1 was mostly cap-dependent. The process was stimulated by a cap structure and strongly inhibited by a stable hairpin at the template 5' end. Upon inhibition, the remaining protein fraction was synthesized in a cap-independent process, which was strongly stimulated by the addition of a cap analogue. The translation initiation from AUG2 showed a largely cap-independent character. The 5' cap structure actually decreased initiation from this site which argues against a leaky scanning mechanism but might suggest the presence of an IRES. Moreover, blocking cap-dependent translation from AUG1 by the stable hairpin did not change the level of initiation from AUG2. Upon addition of the cap analogue, translation from this site was even increased.


Assuntos
Regiões 5' não Traduzidas/genética , Códon de Iniciação/genética , Biossíntese de Proteínas , RNA Mensageiro/química , RNA Mensageiro/genética , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Sequência de Bases , Humanos , Dados de Sequência Molecular , Mutação/genética , Conformação de Ácido Nucleico , Ribossomos
17.
Postepy Biochem ; 53(4): 400-12, 2007.
Artigo em Polonês | MEDLINE | ID: mdl-19024904

RESUMO

All eukaryotic mRNA molecules have a cap structure at the 5' ends which plays a crucial role in the scanning model of their translation initiation. In an alternative way of translation, the active ribosome is formed in a cap-independent mode due to the presence of IRES, internal ribosome entry site, in the 5' untranslated region of certain mRNAs. This region folds into a distinct secondary and tertiary structure, which binds the 40S ribosomal subunit and some protein factors, and subsequently forms the initiation complex and the translationally active 80S ribosome. This enables the synthesis of specific proteins under the conditions when cap-dependent translation is inhibited or strongly reduced. The cap-independent mode of translation initiation concerns proteins that play very important roles during cell cycle, apoptosis, response to stress stimuli and cancer development.


Assuntos
Células Eucarióticas/metabolismo , Modelos Biológicos , Biossíntese de Proteínas/fisiologia , Proteínas de Ligação ao Cap de RNA/metabolismo , Animais , Apoptose/genética , Ciclo Celular/genética , Humanos , Neoplasias/genética , Dobramento de Proteína , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...