Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rev ; 121(1): 110-139, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-32786421

RESUMO

In this review, transition metal-catalyzed methodologies and applications that exploit C-C bond cleavage of vinylcyclopropanes (VCPs) are summarized with a focus on cycloaddition and related addition reactions. Transition metals, including palladium, nickel, iron, ruthenium, rhodium, cobalt, and iridium, can catalyze the cleavage of C-C bonds in activated or nonactivated VCPs. Additionally, these bond-breaking reactions can occur as intra- or intermolecular processes. The properties of activated and nonactivated VCPs are discussed in the Introduction. Various transition metal-catalyzed cycloaddition and addition reactions involving the cleavage of C-C bonds in activated VCPs are then discussed in the next chapter. The transition metal-catalyzed cycloadditions involving the cleavage of C-C in nonactivated VCPs are summarized in the following chapter. Finally, challenges and potential opportunities are outlined in the last chapter.

2.
Org Lett ; 22(4): 1495-1498, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32026682

RESUMO

A general method has been developed for the formation of glycosyl chlorides and bromides from picolinic esters under mild and neutral conditions. Benchtop stable picolinic esters are activated by a copper(II) halide species to afford the corresponding products in high yields with a traceless leaving group. Rare ß glycosyl chlorides are accessible via this route through neighboring group participation. Additionally, glycosyl chlorides with labile protecting groups previously not easily accessible can be prepared.


Assuntos
Brometos/síntese química , Quelantes/química , Cloretos/síntese química , Ésteres/química , Glicosídeos/síntese química , Picolinas/química , Brometos/química , Cloretos/química , Glicosídeos/química , Estrutura Molecular
3.
Acc Chem Res ; 53(1): 231-243, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31820914

RESUMO

Cycloaddition reactions are a hallmark in organic synthesis because they provide an efficient way to construct highly substituted carbo- and heterocycles found in natural products and pharmaceutical agents. Most cycloadditions occur under thermal or photochemical conditions, but transition-metal complexes can promote reactions that occur beyond these circumstances. Transition-metal complexation with alkynes, alkenes, allenes, or dienes often alters the reactivity of those π-systems and facilitates access to diverse cycloaddition products. This Account describes our efforts toward the design of novel five-carbon synthons for use in rhodium-catalyzed (5 + n) cycloadditions, which include 3-acyloxy-1,4-enynes (ACEs) for (5 + 1) and (5 + 2) cycloadditions and 3-hydroxy-1,4-enynes (HYEs) for (5 + 1) cycloadditions. Furthermore, this Account includes relevant computational information, mechanistic insights, and applications of these cycloadditions in the synthesis of various highly substituted carbo- and heterocycles. The (5 + n) cycloaddition reactions presented herein share the following common mechanistic features: the 1,2-migration of an acyloxy group in propargyl esters or the ionization of a hydroxyl group in propargylic alcohols, oxidative cyclization to form a metallacycle, insertion of the one- or two-carbon component, and reductive elimination to yield the final product. In conjunction with a cationic rhodium catalyst, we used ACEs for the intramolecular (5 + 2) cycloaddition with tethered alkynes, alkenes, and allenes. In some cases, an electron-deficient phosphine ligand improved the reaction yields, especially when the ACE featured an internal alkyne. We also demonstrated that chirality could be efficiently transferred from a relatively simple starting material to a more complex bicyclic product. Products derived from ACEs with tethered alkenes and allenes contained one or more stereocenters, and high diastereoselectivity was achieved in most of these cases. For ACEs tethered to an allene, the reaction preferentially occurred at the internal alkene. We also switched the positions of the alkene and the alkyne in the 1,4-enyne of our original ACE to provide an inverted ACE variant, which produced products with complementary functionalities. After we successfully developed the Rh-catalyzed intramolecular (5 + 2) cycloaddition, we optimized conditions for the intermolecular version, which required a neutral rhodium catalyst and phosphine ligand. When a terminal alkyne was used as the two-carbon component, high regioselectivity was observed. While investigating the effect of esters on the rate of the intermolecular (5 + 2) cycloadditions, we determined that an electron-rich ester significantly accelerated the reaction. Subsequently, we demonstrated that (5 + 1) cycloadditions undergo this rate enhancement as well in the presence of an ester. Aside from ACEs, we synthesized HYEs in four steps from commercially available 2-aminobenzoic acid for use in the (5 + 1) cycloaddition. Mechanistically, HYEs were designed so that the aniline nitrogen could serve as the nucleophile and the -OH could serve as the leaving group. Using HYEs, we developed a novel method to make substituted carbazoles, dibenzofurans, and tricyclic compounds with a cyclohexadienone moiety. Although the occurrence of transition-metal-catalyzed acyloxy migrations has been known for decades, only recently has their synthetic value been realized. We hope our studies that employ readily available 1,4-enynes as the five-carbon components in (5 + n) cycloadditions can inspire the design of new two-component and multicomponent cycloadditions.


Assuntos
Alcinos/química , Carbono/química , Cicloparafinas/síntese química , Ródio/química , Catálise , Reação de Cicloadição , Cicloparafinas/química , Estrutura Molecular
4.
Nat Commun ; 10(1): 4015, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488839

RESUMO

The interrogation of complex biological pathways demands diverse small molecule tool compounds, which can often lead to important therapeutics for the treatment of human diseases. Since natural products are the most valuable source for the discovery of therapeutics, the derivatization of natural products has been extensively investigated to generate molecules for biological screenings. However, most previous approaches only modified a limited number of functional groups, which resulted in a limited number of skeleta. Here we show a general strategy for the preparation of a library of complex small molecules by combining state-of-the-art chemistry - the site-selective oxidation of C-H bonds - with reactions that expand rigid, small rings in polycyclic steroids to medium-sized rings. This library occupies a unique chemical space compared to selected diverse reference compounds. The diversification strategy developed herein for steroids can also be expanded to other types of natural products.


Assuntos
Produtos Biológicos/química , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Bibliotecas de Moléculas Pequenas/química , Alquilação , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Engenharia Química/métodos , Quimioinformática/métodos , Humanos , Imidas , Estrutura Molecular , Oxirredução , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico
5.
Angew Chem Int Ed Engl ; 58(28): 9542-9546, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31066162

RESUMO

The site-selective functionalization of carbohydrates is an active area of research. Reported here is the surprising observation that the sterically encumbered adamantyl group directed site-selective acylation at the C2 position of S-glycosides through dispersion interactions between the adamantyl C-H bonds and the π system of the cationic acylated catalyst, which may have broad implications in many other chemical reactions. Because of their stability, chemical orthogonality, and ease of activation for glycosylation, the site-selective acylation of S-glycosides streamlines oligosaccharide synthesis and will have wide applications in complex carbohydrate synthesis.


Assuntos
Acilação/imunologia , Oligossacarídeos/química , Catálise , Glicosilação , Humanos
6.
Carbohydr Res ; 471: 64-77, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30508658

RESUMO

As one of the four fundamental building blocks of life, carbohydrates assume varied and expansive roles in biological contexts. More in-depth understanding of carbohydrates and their interactions, however, is often restricted by our inability to synthesize and subsequently functionalize them in a site-selective manner. This review will summarize recent advances in the site-selective functionalization of carbohydrates using organocatalysts, including achiral catalysts, chiral nucleophilic bases, chiral N-heterocyclic carbenes, and chiral phosphoric acids, with an emphasis on the catalytic nature in each case. As in many endeavors, taking an alternative approach can often lead to success, and selected examples of these achievements will be highlighted as well.


Assuntos
Carboidratos/química , Catálise , Metano/análogos & derivados , Metano/química , Estrutura Molecular , Ácidos Fosfóricos/química , Estereoisomerismo
7.
Chem Soc Rev ; 47(3): 681-701, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29206256

RESUMO

Carbohydrates play a significant role in numerous biological events, and the chemical synthesis of carbohydrates is vital for further studies to understand their various biological functions. Due to the structural complexity of carbohydrates, the stereoselective formation of glycosidic linkages and the site-selective modification of hydroxyl groups are very challenging and at the same time extremely important. In recent years, the rapid development of chiral reagents including both chiral auxiliaries and chiral catalysts has significantly improved the stereoselectivity for glycosylation reactions and the site-selectivity for the modification of carbohydrates. These new tools will greatly facilitate the efficient synthesis of oligosaccharides, polysaccharides, and glycoconjugates. In this tutorial review, we will summarize these advances and highlight the most recent examples.


Assuntos
Carboidratos/química , Glicosilação , Conformação Molecular , Estereoisomerismo
8.
Angew Chem Int Ed Engl ; 56(49): 15698-15702, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29048770

RESUMO

Glycosyl isoquinoline-1-carboxylate was developed as a novel benchtop stable and readily available glycosyl donor. The glycosylation reaction was promoted by the inexpensive Cu(OTf)2 salt under mild reaction conditions. The copper isoquinoline-1-carboxylate salt was precipitated from the solution and thus rendered a traceless leaving group. Surprisingly, the proton from the acceptor was absorbed by the precipitated metal complex and the reaction mixture remained at neutral pH. The copper-promoted glycosylation was also proven to be completely orthogonal to the gold-promoted glycosylation, and an iterative synthesis of oligosaccharides from benchtop stable anomeric ester building blocks becomes possible under mild reaction conditions.

9.
Org Biomol Chem ; 15(36): 7490-7504, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28875209

RESUMO

In carbonylative benzannulations, feedstock carbon monoxide is converted to a benzene ring, which is one of the most fundamentally important and common rings in natural products and pharmaceutical compounds. Carbon monoxide, however, is rather inert in the absence of transition metals. Historically, carbonylative benzannulations have been mediated by stoichiometric chromium and iron in the form of Fischer carbenes. Recently, a number of transition metal-catalyzed carbonylative benzannulations have been developed, and almost all of them involve rhodium catalysts. This review will briefly discuss the mechanism and applications of carbonylative benzannulations involving Fischer carbenes and compare them with the more recent transition metal-catalyzed processes, including [3 + 2 + 1] cycloadditions, [5 + 1] cycloadditions, and other less common cycloadditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...