Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arthritis Rheum ; 64(11): 3604-13, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22961401

RESUMO

OBJECTIVE: In experimental collagenase-induced osteoarthritis (OA) in the mouse, synovial lining macrophages are crucial in mediating joint destruction. It was recently shown that adipose-derived stem cells (ASCs) express immunosuppressive characteristics. This study was undertaken to explore the effect of intraarticular injection of ASCs on synovial lining thickness and its relation to joint pathology in experimental mouse OA. METHODS: ASCs were isolated from fat surrounding the inguinal lymph nodes and cultured for 2 weeks. Experimental OA was induced by injection of collagenase into the knee joints of C57BL/6 mice. OA phenotypes were measured within 8 weeks after induction. Histologic analysis was performed, and synovial thickening, enthesophyte formation, and cartilage destruction were measured in the knee joint. RESULTS: ASCs were injected into the knee joints of mice 7 days after the induction of collagenase-induced OA. On day 1, green fluorescent protein-labeled ASCs were attached to the lining layer in close contact with macrophages. Thickening of the synovial lining, formation of enthesophytes associated with medial collateral ligaments, and formation of enthesophytes associated with cruciate ligaments were significantly inhibited on day 42 after ASC treatment, by 31%, 89%, and 44%, respectively. Destruction of cartilage was inhibited on day 14 (65%) and day 42 (35%). In contrast to early treatment, injection of ASCs on day 14 after OA induction showed no significant effect on synovial activation or joint pathology on day 42. CONCLUSION: These findings indicate that a single injection of ASCs into the knee joints of mice with early-stage collagenase-induced OA inhibits synovial thickening, formation of enthesophytes associated with ligaments, and cartilage destruction.


Assuntos
Condrócitos/imunologia , Articulação do Joelho/imunologia , Osteoartrite do Joelho/imunologia , Osteoartrite do Joelho/terapia , Transplante de Células-Tronco/métodos , Tecido Adiposo/citologia , Animais , Ligamento Cruzado Anterior/imunologia , Ligamento Cruzado Anterior/patologia , Cartilagem Articular/imunologia , Cartilagem Articular/patologia , Movimento Celular/imunologia , Condrócitos/patologia , Condrogênese/imunologia , Colagenases/farmacologia , Ligamentos Colaterais/imunologia , Ligamentos Colaterais/patologia , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Injeções Intra-Articulares , Articulação do Joelho/patologia , Camundongos , Camundongos Endogâmicos C57BL , Osteoartrite do Joelho/induzido quimicamente , Ligamento Cruzado Posterior/patologia , Membrana Sinovial/imunologia , Membrana Sinovial/patologia
3.
PLoS Biol ; 6(12): 2896-910, 2008 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-19108610

RESUMO

Chromatin insulators/boundary elements share the ability to insulate a transgene from its chromosomal context by blocking promiscuous enhancer-promoter interactions and heterochromatin spreading. Several insulating factors target different DNA consensus sequences, defining distinct subfamilies of insulators. Whether each of these families and factors might possess unique cellular functions is of particular interest. Here, we combined chromatin immunoprecipitations and computational approaches to break down the binding signature of the Drosophila boundary element-associated factor (BEAF) subfamily. We identify a dual-core BEAF binding signature at 1,720 sites genome-wide, defined by five to six BEAF binding motifs bracketing 200 bp AT-rich nuclease-resistant spacers. Dual-cores are tightly linked to hundreds of genes highly enriched in cell-cycle and chromosome organization/segregation annotations. siRNA depletion of BEAF from cells leads to cell-cycle and chromosome segregation defects. Quantitative RT-PCR analyses in BEAF-depleted cells show that BEAF controls the expression of dual core-associated genes, including key cell-cycle and chromosome segregation regulators. beaf mutants that impair its insulating function by preventing proper interactions of BEAF complexes with the dual-cores produce similar effects in embryos. Chromatin immunoprecipitations show that BEAF regulates transcriptional activity by restricting the deposition of methylated histone H3K9 marks in dual-cores. Our results reveal a novel role for BEAF chromatin dual-cores in regulating a distinct set of genes involved in chromosome organization/segregation and the cell cycle.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica , Histonas/metabolismo , Animais , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Imunoprecipitação da Cromatina , Biologia Computacional/métodos , Metilação de DNA , Drosophila/genética , Drosophila/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos
4.
EMBO J ; 25(11): 2397-408, 2006 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-16675949

RESUMO

The functions of DNA satellites of centric heterochromatin are difficult to assess with classical molecular biology tools. Using a chemical approach, we demonstrate that synthetic polyamides that specifically target AT-rich satellite repeats of Drosophila melanogaster can be used to study the function of these sequences. The P9 polyamide, which binds the X-chromosome 1.688 g/cm3 satellite III (SAT III), displaces the D1 protein. This displacement in turn results in a selective loss of HP1 and topoisomerase II from SAT III, while these proteins remain bound to the adjacent rDNA repeats and to other regions not targeted by P9. Conversely, targeting of (AAGAG)n satellite V repeats by the P31 polyamide results in the displacement of HP1 from these sequences, indicating that HP1 interactions with chromatin are sensitive to DNA-binding ligands. P9 fed to larvae suppresses the position-effect variegation phenotype of white-mottled adult flies. We propose that this effect is due to displacement of the heterochromatin proteins D1, HP1 and topoisomerase II from SAT III, hence resulting in stochastic chromatin opening and desilencing of the nearby white gene.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , DNA Topoisomerases Tipo II/metabolismo , DNA Satélite/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Heterocromatina/genética , Nylons/metabolismo , Sequência Rica em At , Animais , Sequência de Bases , Encéfalo/fisiologia , Proteínas Cromossômicas não Histona/genética , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/fisiologia , Estruturas Embrionárias/fisiologia , Feminino , Heterocromatina/metabolismo , Dados de Sequência Molecular , Nylons/química , Células Fotorreceptoras de Invertebrados/anatomia & histologia , Células Fotorreceptoras de Invertebrados/fisiologia
5.
Curr Med Chem Anticancer Agents ; 5(4): 409-20, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16101491

RESUMO

Much progress has been made in recent years in developing small molecules that target the minor groove of DNA. Striking advances have led to the design of synthetic molecules that recognize specific DNA sequences with affinities comparable to those of eukaryotic transcription factors. This makes it feasible to modulate or inhibit DNA/protein interactions in vivo, a major step towards the development of general strategies of anti-gene therapy. Examples from anti-parasitic drugs also suggest that synthetic molecules can affect a variety of cellular functions crucial to cell viability by more generally targeting vast portions of genomes based on their biased base composition. This provides a rationale for developing approaches based on selective interactions with broad genomic targets such as satellite repeats that are associated with structural or architectural components of chromatin essential for cellular proliferation. Using examples drawn from the Drosophila melanogaster model system, we review here the use of synthetic polyamides or diamidines that bind the DNA minor groove and can be used as highly selective agents capable of interfering with specific protein/DNA interactions that occur in A+T-rich repeated sequences that constitute a significant portion of eukaryotic genomes. The satellite localization of cellular proteins that bind the minor groove of DNA via domains such as the AT hook motif is highly sensitive to these molecules. A major consequence of the competition between these proteins and their synthetic mimics is an alteration of the nuclear localization and function of proteins such as topoisomerase II, a major target of anti-cancer drugs.


Assuntos
DNA Satélite/genética , DNA Satélite/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Animais , Antiparasitários/química , Antiparasitários/farmacologia , DNA Satélite/química , Distamicinas/química , Distamicinas/farmacologia , Desenho de Fármacos , Humanos , Nylons/síntese química , Nylons/química , Nylons/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...