Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-29502735

RESUMO

Recently revised OECD Testing Guidelines highlight the importance of considering the first site-of-contact when investigating the genotoxic hazard. Thus far, only in vivo approaches are available to address the dermal route of exposure. The 3D Skin Comet and Reconstructed Skin Micronucleus (RSMN) assays intend to close this gap in the in vitro genotoxicity toolbox by investigating DNA damage after topical application. This represents the most relevant route of exposure for a variety of compounds found in household products, cosmetics, and industrial chemicals. The comet assay methodology is able to detect both chromosomal damage and DNA lesions that may give rise to gene mutations, thereby complementing the RSMN which detects only chromosomal damage. Here, the comet assay was adapted to two reconstructed full thickness human skin models: the EpiDerm™- and Phenion® Full-Thickness Skin Models. First, tissue-specific protocols for the isolation of single cells and the general comet assay were transferred to European and US-American laboratories. After establishment of the assay, the protocol was then further optimized with appropriate cytotoxicity measurements and the use of aphidicolin, a DNA repair inhibitor, to improve the assay's sensitivity. In the first phase of an ongoing validation study eight chemicals were tested in three laboratories each using the Phenion® Full-Thickness Skin Model, informing several validation modules. Ultimately, the 3D Skin Comet assay demonstrated a high predictive capacity and good intra- and inter-laboratory reproducibility with four laboratories reaching a 100% predictivity and the fifth yielding 70%. The data are intended to demonstrate the use of the 3D Skin Comet assay as a new in vitro tool for following up on positive findings from the standard in vitro genotoxicity test battery for dermally applied chemicals, ultimately helping to drive the regulatory acceptance of the assay. To expand the database, the validation will continue by testing an additional 22 chemicals.


Assuntos
Ensaio Cometa/normas , Reagentes de Ligações Cruzadas/efeitos adversos , Dano ao DNA , Testes para Micronúcleos/métodos , Testes de Mutagenicidade/métodos , Mutagênicos/efeitos adversos , Pele/patologia , Cosméticos , Humanos , Reprodutibilidade dos Testes , Pele/efeitos dos fármacos
2.
Exp Dermatol ; 21(5): 358-63, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22509833

RESUMO

Skin is important for the absorption and metabolism of exposed chemicals such as cosmetics or pharmaceuticals. The Seventh Amendment to the EU Cosmetics Directive prohibits the use of animals for cosmetic testing for certain endpoints, such as genotoxicity; therefore, there is an urgent need to understand the xenobiotic metabolizing capacities of human skin and to compare these activities with reconstructed 3D skin models developed to replace animal testing. We have measured Phase I enzyme activities of cytochrome P450 (CYP) and cyclooxygenase (COX) in ex vivo human skin, the 3D skin model EpiDerm™ (EPI-200), immortalized keratinocyte-based cell lines and primary normal human epidermal keratinocytes. Our data demonstrate that basal CYP enzyme activities are very low in whole human skin and EPI-200 as well as keratinocytes. In addition, activities in monolayer cells differed from organotypic tissues after induction. COX activity was similar in skin, EPI-200 and NHEK cells, but was significantly lower in immortalized keratinocytes. Hence, the 3D model EPI-200 might represent a more suitable model for dermatotoxicological studies. Altogether, these data help to better understand skin metabolism and expand the knowledge of in vitro alternatives used for dermatotoxicity testing.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Epiderme/metabolismo , Queratinócitos/metabolismo , Modelos Biológicos , Prostaglandina-Endoperóxido Sintases/metabolismo , Pele/metabolismo , Xenobióticos/metabolismo , Alternativas aos Testes com Animais , Benzo(a)Antracenos/farmacologia , Linhagem Celular , Células Cultivadas , Dermotoxinas , Dinoprostona/metabolismo , Células Epidérmicas , Humanos , Técnicas In Vitro , Queratinócitos/citologia , Metilcolantreno , Pele/citologia , Pele/efeitos dos fármacos , Toxicologia
3.
Toxicol In Vitro ; 25(6): 1209-14, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21435388

RESUMO

With the perspective to use human reconstructed skin models for genotoxicity testing which require metabolic activation of xenobiotics, this study aimed to characterize activities of biotransforming enzymes within two human reconstructed skin models, the epidermis model EpiDerm™ (MatTek) and the Phenion® Full-Thickness skin model Phenion®FT (Henkel). According to existing gene expression profiles, Cytochrome P450 (CYP) enzymes, Flavin-dependent monooxygenases (FMO), N-acetyltransferases (NAT) and UDP-glucuronyltransferases (UDP-GT) were investigated in S9 or microsomal fractions. CYP-catalyzed monooxygenation was assayed using 7-ethoxyresorufin, pentoxyresorufin and benzyloxyresorufin as substrates. FMO activity was tested using benzydamine. Conjugating activities of NAT and UDP-GT were determined by acetylation of p-aminobenzoic acid or glucuronation of 4-methylumbelliferone, respectively. Although CYPs were detected by expression profiling, no CYP activity was detected in either the epidermal nor the full-thickness reconstructed skin model while expression and activity of FMO, UDP-GT and NAT were demonstrated in both.


Assuntos
Epiderme/enzimologia , Pele/enzimologia , Xenobióticos/metabolismo , Acetiltransferases/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Epiderme/metabolismo , Perfilação da Expressão Gênica , Glucuronosiltransferase/metabolismo , Humanos , Testes de Mutagenicidade/métodos , Oxigenases/metabolismo , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...