Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 13(6): e0032224, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38771040

RESUMO

When very dry soil is rewet, rapid stimulation of microbial activity has important implications for ecosystem biogeochemistry, yet associated changes in microbial transcription are poorly known. Here, we present metatranscriptomes of California annual grassland soil microbial communities, collected over 1 week from soils rewet after a summer drought-providing a time series of short-term transcriptional response during rewetting.

2.
Glob Chang Biol ; 30(1): e17030, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38010627

RESUMO

Nitrogen (N) deposition increases soil carbon (C) storage by reducing microbial activity. These effects vary in soil beneath trees that associate with arbuscular (AM) and ectomycorrhizal (ECM) fungi. Variation in carbon C and N uptake traits among microbes may explain differences in soil nutrient cycling between mycorrhizal associations in response to high N loads, a mechanism not previously examined due to methodological limitations. Here, we used quantitative Stable Isotope Probing (qSIP) to measure bacterial C and N assimilation rates from an added organic compound, which we conceptualize as functional traits. As such, we applied a trait-based approach to explore whether variation in assimilation rates of bacterial taxa can inform shifts in soil function under chronic N deposition. We show taxon-specific and community-wide declines of bacterial C and N uptake under chronic N deposition in both AM and ECM soils. N deposition-induced reductions in microbial activity were mirrored by declines in soil organic matter mineralization rates in AM but not ECM soils. Our findings suggest C and N uptake traits of bacterial communities can predict C cycling feedbacks to N deposition in AM soils, but additional data, for instance on the traits of fungi, may be needed to connect microbial traits with soil C and N cycling in ECM systems. Our study also highlights the potential of employing qSIP in conjunction with trait-based analytical approaches to inform how ecological processes of microbial communities influence soil functioning.


Assuntos
Micorrizas , Micorrizas/fisiologia , Árvores/microbiologia , Nitrogênio , Solo , Microbiologia do Solo , Bactérias , Carbono
3.
Nat Commun ; 14(1): 5835, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730729

RESUMO

Viruses are abundant, ubiquitous members of soil communities that kill microbial cells, but how they respond to perturbation of soil ecosystems is essentially unknown. Here, we investigate lineage-specific virus-host dynamics in grassland soil following "wet-up", when resident microbes are both resuscitated and lysed after a prolonged dry period. Quantitative isotope tracing, time-resolved metagenomics and viromic analyses indicate that dry soil holds a diverse but low biomass reservoir of virions, of which only a subset thrives following wet-up. Viral richness decreases by 50% within 24 h post wet-up, while viral biomass increases four-fold within one week. Though recent hypotheses suggest lysogeny predominates in soil, our evidence indicates that viruses in lytic cycles dominate the response to wet-up. We estimate that viruses drive a measurable and continuous rate of cell lysis, with up to 46% of microbial death driven by viral lysis one week following wet-up. Thus, viruses contribute to turnover of soil microbial biomass and the widely reported CO2 efflux following wet-up of seasonally dry soils.


Assuntos
Ecossistema , Vírus , Pradaria , California , Solo
4.
Nat Ecol Evol ; 7(11): 1809-1822, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37770548

RESUMO

As central members of soil trophic networks, viruses have the potential to drive substantial microbial mortality and nutrient turnover. Pinpointing viral contributions to terrestrial ecosystem processes remains a challenge, as temporal dynamics are difficult to unravel in the spatially and physicochemically heterogeneous soil environment. In Mediterranean grasslands, the first rainfall after seasonal drought provides an ecosystem reset, triggering microbial activity during a tractable window for capturing short-term dynamics. Here, we simulated precipitation in microcosms from four distinct dry grassland soils and generated 144 viromes, 84 metagenomes and 84 16S ribosomal RNA gene amplicon datasets to characterize viral, prokaryotic and relic DNA dynamics over 10 days. Vastly different viral communities in each soil followed remarkably similar successional trajectories. Wet-up triggered a significant increase in viral richness, followed by extensive compositional turnover. Temporal succession in prokaryotic communities was much less pronounced, perhaps suggesting differences in the scales of activity captured by viromes (representing recently produced, ephemeral viral particles) and total DNA. Still, differences in the relative abundances of Actinobacteria (enriched in dry soils) and Proteobacteria (enriched in wetted soils) matched those of their predicted phages, indicating viral predation of dominant bacterial taxa. Rewetting also rapidly depleted relic DNA, which subsequently reaccumulated, indicating substantial new microbial mortality in the days after wet-up, particularly of the taxa putatively under phage predation. Production of abundant, diverse viral particles via microbial host cell lysis appears to be a conserved feature of the early response to soil rewetting, and results suggest the potential for 'Cull-the-Winner' dynamics, whereby viruses infect and cull but do not decimate dominant host populations.


Assuntos
Ecossistema , Solo , Solo/química , Estações do Ano , Bactérias/genética , DNA
5.
mSystems ; 8(4): e0128022, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37377419

RESUMO

Stable isotope probing (SIP) facilitates culture-independent identification of active microbial populations within complex ecosystems through isotopic enrichment of nucleic acids. Many DNA-SIP studies rely on 16S rRNA gene sequences to identify active taxa, but connecting these sequences to specific bacterial genomes is often challenging. Here, we describe a standardized laboratory and analysis framework to quantify isotopic enrichment on a per-genome basis using shotgun metagenomics instead of 16S rRNA gene sequencing. To develop this framework, we explored various sample processing and analysis approaches using a designed microbiome where the identity of labeled genomes and their level of isotopic enrichment were experimentally controlled. With this ground truth dataset, we empirically assessed the accuracy of different analytical models for identifying active taxa and examined how sequencing depth impacts the detection of isotopically labeled genomes. We also demonstrate that using synthetic DNA internal standards to measure absolute genome abundances in SIP density fractions improves estimates of isotopic enrichment. In addition, our study illustrates the utility of internal standards to reveal anomalies in sample handling that could negatively impact SIP metagenomic analyses if left undetected. Finally, we present SIPmg, an R package to facilitate the estimation of absolute abundances and perform statistical analyses for identifying labeled genomes within SIP metagenomic data. This experimentally validated analysis framework strengthens the foundation of DNA-SIP metagenomics as a tool for accurately measuring the in situ activity of environmental microbial populations and assessing their genomic potential. IMPORTANCE Answering the questions, "who is eating what?" and "who is active?" within complex microbial communities is paramount for our ability to model, predict, and modulate microbiomes for improved human and planetary health. These questions can be pursued using stable isotope probing to track the incorporation of labeled compounds into cellular DNA during microbial growth. However, with traditional stable isotope methods, it is challenging to establish links between an active microorganism's taxonomic identity and genome composition while providing quantitative estimates of the microorganism's isotope incorporation rate. Here, we report an experimental and analytical workflow that lays the foundation for improved detection of metabolically active microorganisms and better quantitative estimates of genome-resolved isotope incorporation, which can be used to further refine ecosystem-scale models for carbon and nutrient fluxes within microbiomes.


Assuntos
Metagenômica , Microbiota , Humanos , Metagenômica/métodos , RNA Ribossômico 16S/genética , DNA/genética , Isótopos , Microbiota/genética
6.
mSystems ; 8(4): e0039023, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37338274

RESUMO

Microbial necromass contributes significantly to both soil carbon (C) persistence and ecosystem nitrogen (N) availability, but quantitative estimates of C and N movement from necromass into soils and decomposer communities are lacking. Additionally, while melanin is known to slow fungal necromass decomposition, how it influences microbial C and N acquisition as well as elemental release into soils remains unclear. Here, we tracked decomposition of isotopically labeled low and high melanin fungal necromass and measured 13C and 15N accumulation in surrounding soils and microbial communities over 77 d in a temperate forest in Minnesota, USA. Mass loss was significantly higher from low melanin necromass, corresponding with greater 13C and 15N soil inputs. A taxonomically and functionally diverse array of bacteria and fungi was enriched in 13C and/or 15N at all sampling points, with enrichment being consistently higher on low melanin necromass and earlier in decomposition. Similar patterns of preferential C and N enrichment of many bacterial and fungal genera early in decomposition suggest that both microbial groups co-contribute to the rapid assimilation of resource-rich soil organic matter inputs. While overall richness of taxa enriched in C was higher than in N for both bacteria and fungi, there was a significant positive relationship between C and N in co-enriched taxa. Collectively, our results demonstrate that melanization acts as a key ecological trait mediating not only fungal necromass decomposition rate but also necromass C and N release and that both elements are rapidly co-utilized by diverse bacterial and fungal decomposers in natural settings. IMPORTANCE Recent studies indicate that microbial dead cells, particularly those of fungi, play an important role in long-term carbon persistence in soils. Despite this growing recognition, how the resources within dead fungal cells (also known as fungal necromass) move into decomposer communities and soils are poorly quantified, particularly in studies based in natural environments. In this study, we found that the contribution of fungal necromass to soil carbon and nitrogen availability was slowed by the amount of melanin present in fungal cell walls. Further, despite the overall rapid acquisition of carbon and nitrogen from necromass by a diverse range of both bacteria and fungi, melanization also slowed microbial uptake of both elements. Collectively, our results indicate that melanization acts as a key ecological trait mediating not only fungal necromass decomposition rate, but also necromass carbon and nitrogen release into soil as well as microbial resource acquisition.


Assuntos
Microbiota , Solo , Carbono , Nitrogênio/análise , Melaninas , Fungos , Bactérias
7.
Oecologia ; 201(3): 771-782, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36847885

RESUMO

Density dependence in an ecological community has been observed in many macro-organismal ecosystems and is hypothesized to maintain biodiversity but is poorly understood in microbial ecosystems. Here, we analyze data from an experiment using quantitative stable isotope probing (qSIP) to estimate per-capita growth and mortality rates of bacterial populations in soils from several ecosystems along an elevation gradient which were subject to nutrient addition of either carbon alone (glucose; C) or carbon with nitrogen (glucose + ammonium-sulfate; C + N). Across all ecosystems, we found that higher population densities, quantified by the abundance of genomes per gram of soil, had lower per-capita growth rates in C + N-amended soils. Similarly, bacterial mortality rates in C + N-amended soils increased at a significantly higher rate with increasing population size than mortality rates in control and C-amended soils. In contrast to the hypothesis that density dependence would promote or maintain diversity, we observed significantly lower bacterial diversity in soils with stronger negative density-dependent growth. Here, density dependence was significantly but weakly responsive to nutrients and was not associated with higher bacterial diversity.


Assuntos
Ecossistema , Solo , Microbiologia do Solo , Bactérias , Carbono
8.
Microbiome ; 10(1): 199, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434737

RESUMO

BACKGROUND: Linking the identity of wild microbes with their ecophysiological traits and environmental functions is a key ambition for microbial ecologists. Of many techniques that strive for this goal, Stable-isotope probing-SIP-remains among the most comprehensive for studying whole microbial communities in situ. In DNA-SIP, actively growing microorganisms that take up an isotopically heavy substrate build heavier DNA, which can be partitioned by density into multiple fractions and sequenced. However, SIP is relatively low throughput and requires significant hands-on labor. We designed and tested a semi-automated, high-throughput SIP (HT-SIP) pipeline to support well-replicated, temporally resolved amplicon and metagenomics experiments. We applied this pipeline to a soil microhabitat with significant ecological importance-the hyphosphere zone surrounding arbuscular mycorrhizal fungal (AMF) hyphae. AMF form symbiotic relationships with most plant species and play key roles in terrestrial nutrient and carbon cycling. RESULTS: Our HT-SIP pipeline for fractionation, cleanup, and nucleic acid quantification of density gradients requires one-sixth of the hands-on labor compared to manual SIP and allows 16 samples to be processed simultaneously. Automated density fractionation increased the reproducibility of SIP gradients compared to manual fractionation, and we show adding a non-ionic detergent to the gradient buffer improved SIP DNA recovery. We applied HT-SIP to 13C-AMF hyphosphere DNA from a 13CO2 plant labeling study and created metagenome-assembled genomes (MAGs) using high-resolution SIP metagenomics (14 metagenomes per gradient). SIP confirmed the AMF Rhizophagus intraradices and associated MAGs were highly enriched (10-33 atom% 13C), even though the soils' overall enrichment was low (1.8 atom% 13C). We assembled 212 13C-hyphosphere MAGs; the hyphosphere taxa that assimilated the most AMF-derived 13C were from the phyla Myxococcota, Fibrobacterota, Verrucomicrobiota, and the ammonia-oxidizing archaeon genus Nitrososphaera. CONCLUSIONS: Our semi-automated HT-SIP approach decreases operator time and improves reproducibility by targeting the most labor-intensive steps of SIP-fraction collection and cleanup. We illustrate this approach in a unique and understudied soil microhabitat-generating MAGs of actively growing microbes living in the AMF hyphosphere (without plant roots). The MAGs' phylogenetic composition and gene content suggest predation, decomposition, and ammonia oxidation may be key processes in hyphosphere nutrient cycling. Video Abstract.


Assuntos
Micorrizas , Micorrizas/fisiologia , Filogenia , Microbiologia do Solo , Amônia , Reprodutibilidade dos Testes , Solo/química , Isótopos , Plantas/microbiologia , DNA
9.
mSystems ; 7(6): e0041722, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36300946

RESUMO

The growth and physiology of soil microorganisms, which play vital roles in biogeochemical cycling, are shaped by both current and historical soil environmental conditions. Here, we developed and applied a genome-resolved metagenomic implementation of quantitative stable isotope probing (qSIP) with an H218O labeling experiment to identify actively growing soil microorganisms and their genomic capacities. qSIP enabled measurement of taxon-specific growth because isotopic incorporation into microbial DNA requires production of new genome copies. We studied three Mediterranean grassland soils across a rainfall gradient to evaluate the hypothesis that historic precipitation levels are an important factor controlling trait selection. We used qSIP-informed genome-resolved metagenomics to resolve the active subset of soil community members and identify their characteristic ecophysiological traits. Higher year-round precipitation levels correlated with higher activity and growth rates of flagellar motile microorganisms. In addition to heavily isotopically labeled bacteria, we identified abundant isotope-labeled phages, suggesting phage-induced cell lysis likely contributed to necromass production at all three sites. Further, there was a positive correlation between phage activity and the activity of putative phage hosts. Contrary to our expectations, the capacity to decompose the diverse complex carbohydrates common in soil organic matter or oxidize methanol and carbon monoxide were broadly distributed across active and inactive bacteria in all three soils, implying that these traits are not highly selected for by historical precipitation. IMPORTANCE Soil moisture is a critical factor that strongly shapes the lifestyle of soil organisms by changing access to nutrients, controlling oxygen diffusion, and regulating the potential for mobility. We identified active microorganisms in three grassland soils with similar mineral contexts, yet different historic rainfall inputs, by adding water labeled with a stable isotope and tracking that isotope in DNA of growing microbes. By examining the genomes of active and inactive microorganisms, we identified functions that are enriched in growing organisms, and showed that different functions were selected for in different soils. Wetter soil had higher activity of motile organisms, but activity of pathways for degradation of soil organic carbon compounds, including simple carbon substrates, were comparable for all three soils. We identified many labeled, and thus active bacteriophages (viruses that infect bacteria), implying that the cells they killed contributed to soil organic matter. The activity of these bacteriophages was significantly correlated with activity of their hosts.


Assuntos
Ecossistema , Microbiologia do Solo , Pradaria , Solo/química , Carbono/metabolismo , Bactérias/genética , Isótopos/metabolismo , DNA/metabolismo
10.
ISME J ; 16(12): 2752-2762, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36085516

RESUMO

Drought disrupts soil microbial activity and many biogeochemical processes. Although plant-associated fungi can support plant performance and nutrient cycling during drought, their effects on nearby drought-exposed soil microbial communities are not well resolved. We used H218O quantitative stable isotope probing (qSIP) and 16S rRNA gene profiling to investigate bacterial community dynamics following water limitation in the hyphospheres of two distinct fungal lineages (Rhizophagus irregularis and Serendipita bescii) grown with the bioenergy model grass Panicum hallii. In uninoculated soil, a history of water limitation resulted in significantly lower bacterial growth potential and growth efficiency, as well as lower diversity in the actively growing bacterial community. In contrast, both fungal lineages had a protective effect on hyphosphere bacterial communities exposed to water limitation: bacterial growth potential, growth efficiency, and the diversity of the actively growing bacterial community were not suppressed by a history of water limitation in soils inoculated with either fungus. Despite their similar effects at the community level, the two fungal lineages did elicit different taxon-specific responses, and bacterial growth potential was greater in R. irregularis compared to S. bescii-inoculated soils. Several of the bacterial taxa that responded positively to fungal inocula belong to lineages that are considered drought susceptible. Overall, H218O qSIP highlighted treatment effects on bacterial community structure that were less pronounced using traditional 16S rRNA gene profiling. Together, these results indicate that fungal-bacterial synergies may support bacterial resilience to moisture limitation.


Assuntos
Microbiologia do Solo , Água , RNA Ribossômico 16S/genética , Água/análise , Fungos , Bactérias , Solo/química
11.
Nat Rev Microbiol ; 20(7): 415-430, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35228712

RESUMO

Soil microorganisms shape global element cycles in life and death. Living soil microorganisms are a major engine of terrestrial biogeochemistry, driving the turnover of soil organic matter - Earth's largest terrestrial carbon pool and the primary source of plant nutrients. Their metabolic functions are influenced by ecological interactions with other soil microbial populations, soil fauna and plants, and the surrounding soil environment. Remnants of dead microbial cells serve as fuel for these biogeochemical engines because their chemical constituents persist as soil organic matter. This non-living microbial biomass accretes over time in soil, forming one of the largest pools of organic matter on the planet. In this Review, we discuss how the biogeochemical cycling of organic matter depends on both living and dead soil microorganisms, their functional traits, and their interactions with the soil matrix and other organisms. With recent omics advances, many of the traits that frame microbial population dynamics and their ecophysiological adaptations can be deciphered directly from assembled genomes or patterns of gene or protein expression. Thus, it is now possible to leverage a trait-based understanding of microbial life and death within improved biogeochemical models and to better predict ecosystem functioning under new climate regimes.


Assuntos
Microbiota , Solo , Biomassa , Carbono/metabolismo , Ecossistema , Plantas/metabolismo , Microbiologia do Solo
13.
Glob Chang Biol ; 28(1): 128-139, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34587352

RESUMO

The carbon stored in soil exceeds that of plant biomass and atmospheric carbon and its stability can impact global climate. Growth of decomposer microorganisms mediates both the accrual and loss of soil carbon. Growth is sensitive to temperature and given the vast biological diversity of soil microorganisms, the response of decomposer growth rates to warming may be strongly idiosyncratic, varying among taxa, making ecosystem predictions difficult. Here, we show that 15 years of warming by transplanting plant-soil mesocosms down in elevation, strongly reduced the growth rates of soil microorganisms, measured in the field using undisturbed soil. The magnitude of the response to warming varied among microbial taxa. However, the direction of the response-reduced growth-was universal and warming explained twofold more variation than did the sum of taxonomic identity and its interaction with warming. For this ecosystem, most of the growth responses to warming could be explained without taxon-specific information, suggesting that in some cases microbial responses measured in aggregate may be adequate for climate modeling. Long-term experimental warming also reduced soil carbon content, likely a consequence of a warming-induced increase in decomposition, as warming-induced changes in plant productivity were negligible. The loss of soil carbon and decreased microbial biomass with warming may explain the reduced growth of the microbial community, more than the direct effects of temperature on growth. These findings show that direct and indirect effects of long-term warming can reduce growth rates of soil microbes, which may have important feedbacks to global warming.


Assuntos
Microbiota , Solo , Carbono , Mudança Climática , Ecossistema , Pradaria , Microbiologia do Solo
14.
Glob Chang Biol ; 28(3): 950-968, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727401

RESUMO

Permafrost thaw is a major potential feedback source to climate change as it can drive the increased release of greenhouse gases carbon dioxide (CO2 ) and methane (CH4 ). This carbon release from the decomposition of thawing soil organic material can be mitigated by increased net primary productivity (NPP) caused by warming, increasing atmospheric CO2 , and plant community transition. However, the net effect on C storage also depends on how these plant community changes alter plant litter quantity, quality, and decomposition rates. Predicting decomposition rates based on litter quality remains challenging, but a promising new way forward is to incorporate measures of the energetic favorability to soil microbes of plant biomass decomposition. We asked how the variation in one such measure, the nominal oxidation state of carbon (NOSC), interacts with changing quantities of plant material inputs to influence the net C balance of a thawing permafrost peatland. We found: (1) Plant productivity (NPP) increased post-thaw, but instead of contributing to increased standing biomass, it increased plant biomass turnover via increased litter inputs to soil; (2) Plant litter thermodynamic favorability (NOSC) and decomposition rate both increased post-thaw, despite limited changes in bulk C:N ratios; (3) these increases caused the higher NPP to cycle more rapidly through both plants and soil, contributing to higher CO2 and CH4  fluxes from decomposition. Thus, the increased C-storage expected from higher productivity was limited and the high global warming potential of CH4 contributed a net positive warming effect. Although post-thaw peatlands are currently C sinks due to high NPP offsetting high CO2 release, this status is very sensitive to the plant community's litter input rate and quality. Integration of novel bioavailability metrics based on litter chemistry, including NOSC, into studies of ecosystem dynamics, is needed to improve the understanding of controls on arctic C stocks under continued ecosystem transition.


Assuntos
Pergelissolo , Regiões Árticas , Dióxido de Carbono/análise , Ecossistema , Plantas , Solo/química
16.
Microbiome ; 9(1): 233, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836550

RESUMO

BACKGROUND: Peatlands are expected to experience sustained yet fluctuating higher temperatures due to climate change, leading to increased microbial activity and greenhouse gas emissions. Despite mounting evidence for viral contributions to these processes in peatlands underlain with permafrost, little is known about viruses in other peatlands. More generally, soil viral biogeography and its potential drivers are poorly understood at both local and global scales. Here, 87 metagenomes and five viral size-fraction metagenomes (viromes) from a boreal peatland in northern Minnesota (the SPRUCE whole-ecosystem warming experiment and surrounding bog) were analyzed for dsDNA viral community ecological patterns, and the recovered viral populations (vOTUs) were compared with our curated PIGEON database of 266,125 vOTUs from diverse ecosystems. RESULTS: Within the SPRUCE experiment, viral community composition was significantly correlated with peat depth, water content, and carbon chemistry, including CH4 and CO2 concentrations, but not with temperature during the first 2 years of warming treatments. Peat vOTUs with aquatic-like signatures (shared predicted protein content with marine and/or freshwater vOTUs) were significantly enriched in more waterlogged surface peat depths. Predicted host ranges for SPRUCE vOTUs were relatively narrow, generally within a single bacterial genus. Of the 4326 SPRUCE vOTUs, 164 were previously detected in other soils, mostly peatlands. None of the previously identified 202,371 marine and freshwater vOTUs in our PIGEON database were detected in SPRUCE peat, but 0.4% of 80,714 viral clusters (VCs, grouped by predicted protein content) were shared between soil and aquatic environments. On a per-sample basis, vOTU recovery was 32 times higher from viromes compared with total metagenomes. CONCLUSIONS: Results suggest strong viral "species" boundaries between terrestrial and aquatic ecosystems and to some extent between peat and other soils, with differences less pronounced at higher taxonomic levels. The significant enrichment of aquatic-like vOTUs in more waterlogged peat suggests that viruses may also exhibit niche partitioning on more local scales. These patterns are presumably driven in part by host ecology, consistent with the predicted narrow host ranges. Although more samples and increased sequencing depth improved vOTU recovery from total metagenomes, the substantially higher per-sample vOTU recovery after viral particle enrichment highlights the utility of soil viromics. Video abstract The importance of Minnesota peat viromes in revealing terrestrial and aquatic niche partitioning for viral populations.


Assuntos
Ecossistema , Solo , Minnesota , Solo/química , Microbiologia do Solo , Viroma
17.
Microbiome ; 9(1): 208, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663463

RESUMO

BACKGROUND: Winter carbon loss in northern ecosystems is estimated to be greater than the average growing season carbon uptake and is primarily driven by microbial decomposers. Viruses modulate microbial carbon cycling via induced mortality and metabolic controls, but it is unknown whether viruses are active under winter conditions (anoxic and sub-freezing temperatures). RESULTS: We used stable isotope probing (SIP) targeted metagenomics to reveal the genomic potential of active soil microbial populations under simulated winter conditions, with an emphasis on viruses and virus-host dynamics. Arctic peat soils from the Bonanza Creek Long-Term Ecological Research site in Alaska were incubated under sub-freezing anoxic conditions with H218O or natural abundance water for 184 and 370 days. We sequenced 23 SIP-metagenomes and measured carbon dioxide (CO2) efflux throughout the experiment. We identified 46 bacterial populations (spanning 9 phyla) and 243 viral populations that actively took up 18O in soil and respired CO2 throughout the incubation. Active bacterial populations represented only a small portion of the detected microbial community and were capable of fermentation and organic matter degradation. In contrast, active viral populations represented a large portion of the detected viral community and one third were linked to active bacterial populations. We identified 86 auxiliary metabolic genes and other environmentally relevant genes. The majority of these genes were carried by active viral populations and had diverse functions such as carbon utilization and scavenging that could provide their host with a fitness advantage for utilizing much-needed carbon sources or acquiring essential nutrients. CONCLUSIONS: Overall, there was a stark difference in the identity and function of the active bacterial and viral community compared to the unlabeled community that would have been overlooked with a non-targeted standard metagenomic analysis. Our results illustrate that substantial active virus-host interactions occur in sub-freezing anoxic conditions and highlight viruses as a major community-structuring agent that likely modulates carbon loss in peat soils during winter, which may be pivotal for understanding the future fate of arctic soils' vast carbon stocks. Video abstract.


Assuntos
Microbiota , Solo , Congelamento , Microbiologia do Solo , Temperatura
18.
mSphere ; 6(5): e0008521, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34468166

RESUMO

The functioning, health, and productivity of soil are intimately tied to a complex network of interactions, particularly in plant root-associated rhizosphere soil. We conducted a stable-isotope-informed, genome-resolved metagenomic study to trace carbon from Avena fatua grown in a 13CO2 atmosphere into soil. We collected paired rhizosphere and nonrhizosphere soil at 6 and 9 weeks of plant growth and extracted DNA that was then separated by density using ultracentrifugation. Thirty-two fractions from each of five samples were grouped by density, sequenced, assembled, and binned to generate 55 unique bacterial genomes that were ≥70% complete. We also identified complete 18S rRNA sequences of several 13C-enriched microeukaryotic bacterivores and fungi. We generated 10 circularized bacteriophage (phage) genomes, some of which were the most labeled entities in the rhizosphere, suggesting that phage may be important agents of turnover of plant-derived C in soil. CRISPR locus targeting connected one of these phage to a Burkholderiales host predicted to be a plant pathogen. Another highly labeled phage is predicted to replicate in a Catenulispora sp., a possible plant growth-promoting bacterium. We searched the genome bins for traits known to be used in interactions involving bacteria, microeukaryotes, and plant roots and found DNA from heavily 13C-labeled bacterial genes thought to be involved in modulating plant signaling hormones, plant pathogenicity, and defense against microeukaryote grazing. Stable-isotope-informed, genome-resolved metagenomics indicated that phage can be important agents of turnover of plant-derived carbon in soil. IMPORTANCE Plants grow in intimate association with soil microbial communities; these microbes can facilitate the availability of essential resources to plants. Thus, plant productivity commonly depends on interactions with rhizosphere bacteria, viruses, and eukaryotes. Our work is significant because we identified the organisms that took up plant-derived organic C in rhizosphere soil and determined that many of the active bacteria are plant pathogens or can impact plant growth via hormone modulation. Further, by showing that bacteriophage accumulate CO2-derived carbon, we demonstrated their vital roles in redistribution of plant-derived C into the soil environment through bacterial cell lysis. The use of stable-isotope probing (SIP) to identify consumption (or lack thereof) of root-derived C by key microbial community members within highly complex microbial communities opens the way for assessing manipulations of bacteria and phage with potentially beneficial and detrimental traits, ultimately providing a path to improved plant health and soil carbon storage.


Assuntos
Bactérias/genética , Bactérias/metabolismo , DNA Bacteriano/biossíntese , Genoma Bacteriano/genética , RNA Bacteriano/biossíntese , Bactérias/classificação , Carbono/metabolismo , DNA Bacteriano/genética , Marcação por Isótopo , Metagenômica , Filogenia , Raízes de Plantas/microbiologia , RNA Bacteriano/genética , Rizosfera , Microbiologia do Solo
19.
Nat Commun ; 12(1): 3381, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099669

RESUMO

Nutrient amendment diminished bacterial functional diversity, consolidating carbon flow through fewer bacterial taxa. Here, we show strong differences in the bacterial taxa responsible for respiration from four ecosystems, indicating the potential for taxon-specific control over soil carbon cycling. Trends in functional diversity, defined as the richness of bacteria contributing to carbon flux and their equitability of carbon use, paralleled trends in taxonomic diversity although functional diversity was lower overall. Among genera common to all ecosystems, Bradyrhizobium, the Acidobacteria genus RB41, and Streptomyces together composed 45-57% of carbon flow through bacterial productivity and respiration. Bacteria that utilized the most carbon amendment (glucose) were also those that utilized the most native soil carbon, suggesting that the behavior of key soil taxa may influence carbon balance. Mapping carbon flow through different microbial taxa as demonstrated here is crucial in developing taxon-sensitive soil carbon models that may reduce the uncertainty in climate change projections.


Assuntos
Ciclo do Carbono , Mudança Climática , Nutrientes/metabolismo , Microbiologia do Solo , Solo/química , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Acidobacteria/metabolismo , Biodiversidade , Bradyrhizobium/genética , Bradyrhizobium/isolamento & purificação , Bradyrhizobium/metabolismo , Carbono/metabolismo , DNA Bacteriano/isolamento & purificação , Monitorização de Parâmetros Ecológicos/métodos , Previsões/métodos , Fósforo/metabolismo , RNA Ribossômico 16S/genética , Streptomyces/genética , Streptomyces/isolamento & purificação , Streptomyces/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...