Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(13)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38998768

RESUMO

The removal of persistent organic micropollutants (OMPs) from secondary effluent in wastewater treatment plants is critical for meeting water reuse standards. Traditional treatment methods often fail to adequately degrade these contaminants. This study explored the efficacy of a hybrid ozonation membrane filtration (HOMF) process using CeO2 and CeTiOx-doped ceramic crossflow ultrafiltration ceramic membranes for the degradation of OMPs. Hollow ceramic membranes (CM) with a 300 kDa molecular weight cut-off (MWCO) were modified to serve as substrates for catalytic nanosized metal oxides in a crossflow and inside-out operational configuration. Three types of depositions were tested: a single layer of CeO2, a single layer of CeTiOx, and a combined layer of CeO2 + CeTiOx. These catalytic nanoparticles were distributed uniformly using a solution-based method supported by vacuum infiltration to ensure high-throughput deposition. The results demonstrated successful infiltration of the metal oxides, although the yield permeability and transmembrane flow varied, following this order: pristine > CeTiOx > CeO2 > CeO2 + CeTiOx. Four OMPs were examined: two easily degraded by ozone (carbamazepine and diclofenac) and two recalcitrant (ibuprofen and pCBA). The highest OMP degradation was observed in demineralized water, particularly with the CeO2 + CeTiOx modification, suggesting O3 decomposition to hydroxyl radicals. The increased resistance in the modified membranes contributed to the adsorption phenomena. The degradation efficiency decreased in secondary effluent due to competition with the organic and inorganic load, highlighting the challenges in complex water matrices.

2.
Gels ; 9(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36826264

RESUMO

The grafting of a stimuli-responsive polymer (poly(dimethylaminoethyl methacrylate)) onto cellulose was achieved by performing free radical polymerization of a vinyl/divinyl monomer in cellulose solution. The grafting and crosslinking efficiency in the material have been increased by subsequent irradiation of the samples with ionizing radiation (doses of 10, 30, or 100 kGy). The relative amount of poly(dimethylaminoethyl methacrylate) in the prepared hydrogels was determined by infrared spectroscopy. The swelling behavior of the hydrogels was studied thoroughly, including microgelation extent, equilibrium swelling, and reswelling degree, as well as the dependence on the gelation procedure. The dynamic viscoelastic behavior of prepared hydrogels was also studied. The tan δ values indicate a solid-like behavior while the obtained hydrogels have a complex modulus in the range of 14-39 kPa, which is suitable for hydrogels used in biomedical applications. In addition, the incorporation of Ag particles and the adsorption of Fe3+ ions were tested to evaluate the additional functionalities of the prepared hydrogels. It was found that the introduction of PDMAEMA to the hydrogels enhanced their ability to synthesize Ag particles and absorb Fe3+ ions, providing a platform for the potential preparation of hydrogels for the treatment of wounds.

3.
Polymers (Basel) ; 15(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36679137

RESUMO

One of the most widely used conductive polymers in the growing conductive polymer industry is poly(3,4-ethylenedioxythiophene) (PEDOT), whose main advantages are good thermal and chemical stability, a conjugated backbone, and ease of functionalization. The main drawback of PEDOT for use as wearable electronics is the lack of stretchable and self-healing properties. This can be overcome by grafting PEDOT with flexible side branches. As pure PEDOT is highly stable and grafting would not be possible, a new bromine-functionalized thiophene derivative, 2-(tiophen-3-yl) ethyl 2-bromo-2-methylpropanoate (ThBr), was synthesized and copolymerized with EDOT for the synthesis of a poly(EDOT-co-ThBr) ATRP macroinitiator. After the synthesis of the macroinitiator, flexible polymers could be introduced as side branches by atom-transfer radical polymerization (ATRP) to modify mechanical properties. Before this last synthesis step, the conditions for the synthesis of the ATRP macroinitiator should be investigated, as only functionalized units can function as grafting sites. In this study, nine new copolymers with different monomer ratios were synthesized to investigate the reactivity of each monomer. The ratios used in the different syntheses were ThBr:EDOT = 1:0.2, 1:0.4, 1:0.6, 1:0.8, 1:1, 0.8:1, 0.6:1, 0.4:1, and 0.2:1. In order to determine the effect of reaction time on the final properties of the polymer, macroinitiator synthesis at a 1:1 ratio was carried out at different time periods: 8 h, 16 h, 24 h, and 48 h. The obtained products were characterized by different techniques, and it was found that polymerizations longer than 24 h yielded practically insoluble macroinitiators, thus limiting its further application. Reactivity ratios of both monomers were found to be similar and close to 1, making the copolymerization reaction symmetrical and the obtained macroinitiators almost random copolymers.

4.
Gels ; 8(10)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36286137

RESUMO

Hydrogels have been investigated due to their unique properties. These include high water content and biocompatibility. Here, hydrogels with different ratios of poly(2-(dimethylamino)ethylmethacrylate) (PDMAEMA) were grafted onto cellulose (Cel-g-PDMAEMA) by the free radical polymerization method and gamma-ray radiation was applied in order to increase crosslinking and content of PDMAEMA. Gamma irradiation enabled an increase of PDMAEMA content in hydrogels in case of higher ratio of 2-(dimethylamino)ethyl methacrylate in the initial reaction mixture. The swelling of synthesized hydrogels was monitored in dependence of pH (3, 5.5 and 10) during up to 60 days. The swelling increased from 270% to 900%. Testing of antimicrobial activity of selected hydrogel films showed weak inhibitory activity against Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis. The results obtained by the cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) indicate that chemically synthesized hydrogels have good characteristics for the supercapacitor application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...