Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36382887

RESUMO

Learning from experience depends at least in part on changes in neuronal connections. We present the largest map of connectivity to date between cortical neurons of a defined type (layer 2/3 [L2/3] pyramidal cells in mouse primary visual cortex), which was enabled by automated analysis of serial section electron microscopy images with improved handling of image defects (250 × 140 × 90 µm3 volume). We used the map to identify constraints on the learning algorithms employed by the cortex. Previous cortical studies modeled a continuum of synapse sizes by a log-normal distribution. A continuum is consistent with most neural network models of learning, in which synaptic strength is a continuously graded analog variable. Here, we show that synapse size, when restricted to synapses between L2/3 pyramidal cells, is well modeled by the sum of a binary variable and an analog variable drawn from a log-normal distribution. Two synapses sharing the same presynaptic and postsynaptic cells are known to be correlated in size. We show that the binary variables of the two synapses are highly correlated, while the analog variables are not. Binary variation could be the outcome of a Hebbian or other synaptic plasticity rule depending on activity signals that are relatively uniform across neuronal arbors, while analog variation may be dominated by other influences such as spontaneous dynamical fluctuations. We discuss the implications for the longstanding hypothesis that activity-dependent plasticity switches synapses between bistable states.


Assuntos
Células Piramidais , Sinapses , Camundongos , Animais , Células Piramidais/fisiologia , Sinapses/fisiologia , Plasticidade Neuronal/fisiologia , Microscopia Eletrônica
2.
Proc Natl Acad Sci U S A ; 119(48): e2202580119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36417438

RESUMO

Neurons in the developing brain undergo extensive structural refinement as nascent circuits adopt their mature form. This physical transformation of neurons is facilitated by the engulfment and degradation of axonal branches and synapses by surrounding glial cells, including microglia and astrocytes. However, the small size of phagocytic organelles and the complex, highly ramified morphology of glia have made it difficult to define the contribution of these and other glial cell types to this crucial process. Here, we used large-scale, serial section transmission electron microscopy (TEM) with computational volume segmentation to reconstruct the complete 3D morphologies of distinct glial types in the mouse visual cortex, providing unprecedented resolution of their morphology and composition. Unexpectedly, we discovered that the fine processes of oligodendrocyte precursor cells (OPCs), a population of abundant, highly dynamic glial progenitors, frequently surrounded small branches of axons. Numerous phagosomes and phagolysosomes (PLs) containing fragments of axons and vesicular structures were present inside their processes, suggesting that OPCs engage in axon pruning. Single-nucleus RNA sequencing from the developing mouse cortex revealed that OPCs express key phagocytic genes at this stage, as well as neuronal transcripts, consistent with active axon engulfment. Although microglia are thought to be responsible for the majority of synaptic pruning and structural refinement, PLs were ten times more abundant in OPCs than in microglia at this stage, and these structures were markedly less abundant in newly generated oligodendrocytes, suggesting that OPCs contribute substantially to the refinement of neuronal circuits during cortical development.


Assuntos
Neocórtex , Células Precursoras de Oligodendrócitos , Animais , Camundongos , Axônios/metabolismo , Oligodendroglia/metabolismo , Neurônios/metabolismo
3.
Cell ; 185(6): 1082-1100.e24, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216674

RESUMO

We assembled a semi-automated reconstruction of L2/3 mouse primary visual cortex from ∼250 × 140 × 90 µm3 of electron microscopic images, including pyramidal and non-pyramidal neurons, astrocytes, microglia, oligodendrocytes and precursors, pericytes, vasculature, nuclei, mitochondria, and synapses. Visual responses of a subset of pyramidal cells are included. The data are publicly available, along with tools for programmatic and three-dimensional interactive access. Brief vignettes illustrate the breadth of potential applications relating structure to function in cortical circuits and neuronal cell biology. Mitochondria and synapse organization are characterized as a function of path length from the soma. Pyramidal connectivity motif frequencies are predicted accurately using a configuration model of random graphs. Pyramidal cells receiving more connections from nearby cells exhibit stronger and more reliable visual responses. Sample code shows data access and analysis.


Assuntos
Neocórtex , Animais , Camundongos , Microscopia Eletrônica , Neocórtex/fisiologia , Organelas , Células Piramidais/fisiologia , Sinapses/fisiologia
4.
Elife ; 102021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851292

RESUMO

Inhibitory neurons in mammalian cortex exhibit diverse physiological, morphological, molecular, and connectivity signatures. While considerable work has measured the average connectivity of several interneuron classes, there remains a fundamental lack of understanding of the connectivity distribution of distinct inhibitory cell types with synaptic resolution, how it relates to properties of target cells, and how it affects function. Here, we used large-scale electron microscopy and functional imaging to address these questions for chandelier cells in layer 2/3 of the mouse visual cortex. With dense reconstructions from electron microscopy, we mapped the complete chandelier input onto 153 pyramidal neurons. We found that synapse number is highly variable across the population and is correlated with several structural features of the target neuron. This variability in the number of axo-axonic ChC synapses is higher than the variability seen in perisomatic inhibition. Biophysical simulations show that the observed pattern of axo-axonic inhibition is particularly effective in controlling excitatory output when excitation and inhibition are co-active. Finally, we measured chandelier cell activity in awake animals using a cell-type-specific calcium imaging approach and saw highly correlated activity across chandelier cells. In the same experiments, in vivo chandelier population activity correlated with pupil dilation, a proxy for arousal. Together, these results suggest that chandelier cells provide a circuit-wide signal whose strength is adjusted relative to the properties of target neurons.


Assuntos
Células Piramidais/ultraestrutura , Sinapses/ultraestrutura , Córtex Visual/ultraestrutura , Animais , Feminino , Masculino , Camundongos , Microscopia Eletrônica de Transmissão
5.
Front Aging Neurosci ; 13: 713726, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366832

RESUMO

The ability to investigate therapeutic interventions in animal models of neurodegenerative diseases depends on extensive characterization of the model(s) being used. There are numerous models that have been generated to study Alzheimer's disease (AD) and the underlying pathogenesis of the disease. While transgenic models have been instrumental in understanding AD mechanisms and risk factors, they are limited in the degree of characteristics displayed in comparison with AD in humans, and the full spectrum of AD effects has yet to be recapitulated in a single mouse model. The Model Organism Development and Evaluation for Late-Onset Alzheimer's Disease (MODEL-AD) consortium was assembled by the National Institute on Aging (NIA) to develop more robust animal models of AD with increased relevance to human disease, standardize the characterization of AD mouse models, improve preclinical testing in animals, and establish clinically relevant AD biomarkers, among other aims toward enhancing the translational value of AD models in clinical drug design and treatment development. Here we have conducted a detailed characterization of the 5XFAD mouse, including transcriptomics, electroencephalogram, in vivo imaging, biochemical characterization, and behavioral assessments. The data from this study is publicly available through the AD Knowledge Portal.

6.
Cell Rep ; 34(11): 108858, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33730586

RESUMO

In the retina, amacrine interneurons inhibit retinal ganglion cell (RGC) dendrites to shape retinal output. Amacrine cells typically use either GABA or glycine to exert synaptic inhibition. Here, we combined transgenic tools with immunohistochemistry, electrophysiology, and 3D electron microscopy to determine the composition and organization of inhibitory synapses across the dendritic arbor of a well-characterized RGC type in the mouse retina: the ON-sustained alpha RGC. We find mixed GABA-glycine receptor synapses across this RGC type, unveiling the existence of "mixed" inhibitory synapses in the retinal circuit. Presynaptic amacrine boutons with dual release sites are apposed to ON-sustained alpha RGC postsynapses. We further reveal the sequence of postsynaptic assembly for these mixed synapses: GABA receptors precede glycine receptors, and a lack of early GABA receptor expression impedes the recruitment of glycine receptors. Together our findings uncover the organization and developmental profile of an additional motif of inhibition in the mammalian retina.


Assuntos
Glicina/metabolismo , Inibição Neural , Células Ganglionares da Retina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Células Amácrinas/metabolismo , Animais , Dendritos/metabolismo , Regulação para Baixo , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Neurotransmissores/metabolismo , Receptores de GABA/metabolismo , Receptores de Glicina/metabolismo , Células Ganglionares da Retina/ultraestrutura , Sinapses/metabolismo
7.
Nat Commun ; 11(1): 4949, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009388

RESUMO

Electron microscopy (EM) is widely used for studying cellular structure and network connectivity in the brain. We have built a parallel imaging pipeline using transmission electron microscopes that scales this technology, implements 24/7 continuous autonomous imaging, and enables the acquisition of petascale datasets. The suitability of this architecture for large-scale imaging was demonstrated by acquiring a volume of more than 1 mm3 of mouse neocortex, spanning four different visual areas at synaptic resolution, in less than 6 months. Over 26,500 ultrathin tissue sections from the same block were imaged, yielding a dataset of more than 2 petabytes. The combined burst acquisition rate of the pipeline is 3 Gpixel per sec and the net rate is 600 Mpixel per sec with six microscopes running in parallel. This work demonstrates the feasibility of acquiring EM datasets at the scale of cortical microcircuits in multiple brain regions and species.


Assuntos
Processamento de Imagem Assistida por Computador , Microscopia Eletrônica de Transmissão , Rede Nervosa/ultraestrutura , Neurônios/ultraestrutura , Animais , Automação , Camundongos , Neocórtex/diagnóstico por imagem , Software
8.
Proc Natl Acad Sci U S A ; 115(51): E12083-E12090, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30509993

RESUMO

Synaptic inhibition controls a neuron's output via functionally distinct inputs at two subcellular compartments, the cell body and the dendrites. It is unclear whether the assembly of these distinct inhibitory inputs can be regulated independently by neurotransmission. In the mammalian retina, γ-aminobutyric acid (GABA) release from starburst amacrine cells (SACs) onto the dendrites of on-off direction-selective ganglion cells (ooDSGCs) is essential for directionally selective responses. We found that ooDSGCs also receive GABAergic input on their somata from other amacrine cells (ACs), including ACs containing the vasoactive intestinal peptide (VIP). When net GABAergic transmission is reduced, somatic, but not dendritic, GABAA receptor clusters on the ooDSGC increased in number and size. Correlative fluorescence imaging and serial electron microscopy revealed that these enlarged somatic receptor clusters are localized to synapses. By contrast, selectively blocking vesicular GABA release from either SACs or VIP ACs did not alter dendritic or somatic receptor distributions on the ooDSGCs, showing that neither SAC nor VIP AC GABA release alone is required for the development of inhibitory synapses in ooDSGCs. Furthermore, a reduction in net GABAergic transmission, but not a selective reduction from SACs, increased excitatory drive onto ooDSGCs. This increased excitation may drive a homeostatic increase in ooDSGC somatic GABAA receptors. Differential regulation of GABAA receptors on the ooDSGC's soma and dendrites could facilitate homeostatic control of the ooDSGC's output while enabling the assembly of the GABAergic connectivity underlying direction selectivity to be indifferent to altered transmission.


Assuntos
Células Ganglionares da Retina/fisiologia , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Camundongos , Camundongos Transgênicos , Receptores de GABA-A/metabolismo , Receptores de GABA-A/fisiologia , Células Ganglionares da Retina/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Ácido gama-Aminobutírico/metabolismo
9.
Neuron ; 89(6): 1317-1330, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26985724

RESUMO

The starburst amacrine cell in the mouse retina presents an opportunity to examine the precise role of sensory input location on neuronal computations. Using visual receptive field mapping, glutamate uncaging, two-photon Ca(2+) imaging, and genetic labeling of putative synapses, we identify a unique arrangement of excitatory inputs and neurotransmitter release sites on starburst amacrine cell dendrites: the excitatory input distribution is skewed away from the release sites. By comparing computational simulations with Ca(2+) transients recorded near release sites, we show that this anatomical arrangement of inputs and outputs supports a dendritic mechanism for computing motion direction. Direction-selective Ca(2+) transients persist in the presence of a GABA-A receptor antagonist, though the directional tuning is reduced. These results indicate a synergistic interaction between dendritic and circuit mechanisms for generating direction selectivity in the starburst amacrine cell.


Assuntos
Células Amácrinas/fisiologia , Dendritos/fisiologia , Modelos Neurológicos , Percepção de Movimento/fisiologia , Orientação/fisiologia , Retina/citologia , Sinapses/fisiologia , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Células Amácrinas/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Simulação por Computador , Proteína 4 Homóloga a Disks-Large , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/farmacologia , Guanilato Quinases/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Percepção de Movimento/efeitos dos fármacos , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/ultraestrutura , Vias Visuais/fisiologia
10.
Neural Dev ; 10: 17, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-26091805

RESUMO

BACKGROUND: Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate circadian light entrainment and the pupillary light response in adult mice. In early development these cells mediate different processes, including negative phototaxis and the timing of retinal vascular development. To determine if ipRGC physiologic properties also change with development, we measured ipRGC cell density and light responses in wild-type mouse retinas at post-natal days 8, 15 and 30. RESULTS: Melanopsin-positive cell density decreases by 17% between post-natal days 8 and 15 and by 25% between days 8 and 30. This decrease is due specifically to a decrease in cells co-labeled with a SMI-32, a marker for alpha-on ganglion cells (corresponding to adult morphologic type M4 ipRGCs). On multi-electrode array recordings, post-natal day 8 (P8) ipRGC light responses show more robust firing, reduced adaptation and more rapid recovery from short and extended light pulses than do the light responses of P15 and P30 ipRGCs. Three ipRGC subtypes - Types I-III - have been defined in early development based on sensitivity and latency on multielectrode array recordings. We find that Type I cells largely account for the unique physiologic properties of P8 ipRGCs. Type I cells have previously been shown to have relatively short latencies and high sensitivity. We now show that Type I cells show have rapid and robust recovery from long and short bright light exposures compared with Type II and III cells, suggesting differential light adaptation mechanisms between cell types. By P15, Type I ipRGCs are no longer detectable. Loose patch recordings of P8 M4 ipRGCs demonstrate Type I physiology. CONCLUSIONS: Type I ipRGCs are found only in early development. In addition to their previously described high sensitivity and rapid kinetics, these cells are uniquely resistant to adaptation and recover quickly and fully to short and prolonged light exposure. Type I ipRGCs correspond to the SMI-32 positive, M4 subtype and largely lose melanopsin expression in development. These cells constitute a unique morphologic and physiologic class of ipRGCs functioning early in postnatal development.


Assuntos
Retina/embriologia , Células Ganglionares da Retina/fisiologia , Animais , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Estimulação Luminosa , Células Ganglionares da Retina/citologia
11.
Curr Biol ; 24(3): 310-5, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24440397

RESUMO

The distributions of neurons in sensory circuits display ordered spatial patterns arranged to enhance or encode specific regions or features of the external environment. Indeed, visual space is not sampled uniformly across the vertebrate retina. Retinal ganglion cell (RGC) density increases and dendritic arbor size decreases toward retinal locations with higher sampling frequency, such as the fovea in primates and area centralis in carnivores [1]. In these locations, higher acuity at the level of individual cells is obtained because the receptive field center of a RGC corresponds approximately to the spatial extent of its dendritic arbor [2, 3]. For most species, structurally and functionally distinct RGC types appear to have similar topographies, collectively scaling their cell densities and arbor sizes toward the same retinal location [4]. Thus, visual space is represented across the retina in parallel by multiple distinct circuits [5]. In contrast, we find a population of mouse RGCs, known as alpha or alpha-like [6], that displays a nasal-to-temporal gradient in cell density, size, and receptive fields, which facilitates enhanced visual sampling in frontal visual fields. The distribution of alpha-like RGCs contrasts with other known mouse RGC types and suggests that, unlike most mammals, RGC topographies in mice are arranged to sample space differentially.


Assuntos
Células Ganglionares da Retina/fisiologia , Células Ganglionares da Retina/ultraestrutura , Percepção Visual/fisiologia , Animais , Contagem de Células , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos
12.
Proc Natl Acad Sci U S A ; 110(37): 15109-14, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23980162

RESUMO

Proper functioning of sensory systems requires the generation of appropriate numbers and proportions of neuronal subtypes that encode distinct information. Perception of color relies on signals from multiple cone photoreceptor types. In cone-dominated retinas, each cone expresses a single opsin type with peak sensitivity to UV, long (L) (red), medium (M) (green), or short (S) (blue) wavelengths. The modes of cell division generating distinct cone types are unknown. We report here a mechanism whereby zebrafish cone photoreceptors of the same type are produced by symmetric division of dedicated precursors. Transgenic fish in which the thyroid hormone receptor ß2 (trß2) promoter drives fluorescent protein expression before L-cone precursors themselves are produced permitted tracking of their division in vivo. Every L cone in a local region resulted from the terminal division of an L-cone precursor, suggesting that such divisions contribute significantly to L-cone production. Analysis of the fate of isolated pairs of cones and time-lapse observations suggest that other cone types can also arise by symmetric terminal divisions. Such divisions of dedicated precursors may help to rapidly attain the final numbers and proportions of cone types (L > M, UV > S) in zebrafish larvae. Loss- and gain-of-function experiments show that L-opsin expression requires trß2 activity before cone differentiation. Ectopic expression of trß2 after cone differentiation produces cones with mixed opsins. Temporal differences in the onset of trß2 expression could explain why some species have mixed, and others have pure, cone types.


Assuntos
Opsinas dos Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/citologia , Peixe-Zebra/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados , Sequência de Bases , Diferenciação Celular , Divisão Celular , Linhagem da Célula , Opsinas dos Cones/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Larva/citologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Proteínas Luminescentes/genética , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Células Fotorreceptoras Retinianas Cones/classificação , Células Fotorreceptoras Retinianas Cones/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Receptores beta dos Hormônios Tireóideos/antagonistas & inibidores , Receptores beta dos Hormônios Tireóideos/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
13.
PLoS One ; 8(7): e69612, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922756

RESUMO

Neuronal output requires a concerted balance between excitatory and inhibitory (I/E) input. Like other circuits, inhibitory synaptogenesis in the retina precedes excitatory synaptogenesis. How then do neurons attain their mature balance of I/E ratios despite temporal offset in synaptogenesis? To directly compare the development of glutamatergic and GABAergic synapses onto the same cell, we biolistically transfected retinal ganglion cells (RGCs) with PSD95CFP, a marker of glutamatergic postsynaptic sites, in transgenic Thy1-YFPγ2 mice in which GABAA receptors are fluorescently tagged. We mapped YFPγ2 and PSD95CFP puncta distributions on three RGC types at postnatal day P12, shortly before eye opening, and at P21 when robust light responses in RGCs are present. The mature IGABA/E ratios varied among ON-Sustained (S) A-type, OFF-S A-type, and bistratified direction selective (DS) RGCs. These ratios were attained at different rates, before eye-opening for ON-S and OFF-S A-type, and after eye-opening for DS RGCs. At both ages examined, the IGABA/E ratio was uniform across the arbors of the three RGC types. Furthermore, measurements of the distances between neighboring PSD95CFP and YFPγ2 puncta on RGC dendrites indicate that their local relationship is established early in development, and cannot be predicted by random organization. These close spatial associations between glutamatergic and GABAergic postsynaptic sites appear to represent local synaptic arrangements revealed by correlative light and EM reconstructions of a single RGC's dendrites. Thus, although RGC types have different IGABA/E ratios and establish these ratios at separate rates, the local relationship between excitatory and inhibitory inputs appear similarly constrained across the RGC types studied.


Assuntos
Dendritos/metabolismo , Neurônios GABAérgicos/citologia , Ácido Glutâmico/metabolismo , Células Ganglionares da Retina/citologia , Sinapses/metabolismo , Células Amácrinas/citologia , Células Amácrinas/metabolismo , Células Amácrinas/ultraestrutura , Animais , Dendritos/ultraestrutura , Potenciais Pós-Sinápticos Excitadores , Fluorescência , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/ultraestrutura , Potenciais Pós-Sinápticos Inibidores , Camundongos , Camundongos Transgênicos , Receptores de GABA-A/metabolismo , Células Bipolares da Retina/citologia , Células Bipolares da Retina/metabolismo , Células Bipolares da Retina/ultraestrutura , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/ultraestrutura , Coloração e Rotulagem , Sinapses/ultraestrutura , Antígenos Thy-1/metabolismo
14.
J Neurophysiol ; 107(12): 3479-92, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22457456

RESUMO

We investigated actin's function in vesicle recycling and exocytosis at lamprey synapses and show that FM1-43 puncta and phalloidin-labeled filamentous actin (F-actin) structures are colocalized, yet recycling vesicles are not contained within F-actin clusters. Additionally, phalloidin also labels a plasma membrane-associated cortical actin. Injection of fluorescent G-actin revealed activity-independent dynamic actin incorporation into presynaptic synaptic vesicle clusters but not into cortical actin. Latrunculin-A, which sequesters G-actin, dispersed vesicle-associated actin structures and prevented subsequent labeled G-actin and phalloidin accumulation at presynaptic puncta, yet cortical phalloidin labeling persisted. Dispersal of presynaptic F-actin structures by latrunculin-A did not disrupt vesicle clustering or recycling or alter the amplitude or kinetics of excitatory postsynaptic currents (EPSCs). However, it slightly enhanced release during repetitive stimulation. While dispersal of presynaptic actin puncta with latrunculin-A failed to disperse synaptic vesicles or inhibit synaptic transmission, presynaptic phalloidin injection blocked exocytosis and reduced endocytosis measured by action potential-evoked FM1-43 staining. Furthermore, phalloidin stabilization of only cortical actin following pretreatment with latrunculin-A was sufficient to inhibit synaptic transmission. Conversely, treatment of axons with jasplakinolide, which induces F-actin accumulation but disrupts F-actin structures in vivo, resulted in increased synaptic transmission accompanied by a loss of phalloidin labeling of cortical actin but no loss of actin labeling within vesicle clusters. Marked synaptic deficits seen with phalloidin stabilization of cortical F-actin, in contrast to the minimal effects of disruption of a synaptic vesicle-associated F-actin, led us to conclude that two structurally and functionally distinct pools of actin exist at presynaptic sites.


Assuntos
Actinas/fisiologia , Exocitose/fisiologia , Terminações Pré-Sinápticas/fisiologia , Vesículas Sinápticas/fisiologia , Actinas/análise , Actinas/metabolismo , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Depsipeptídeos/farmacologia , Endocitose/efeitos dos fármacos , Endocitose/fisiologia , Exocitose/efeitos dos fármacos , Lampreias , Faloidina/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Compostos de Piridínio/análise , Compostos de Amônio Quaternário/análise , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/efeitos dos fármacos , Tiazolidinas/farmacologia
15.
Neural Dev ; 6: 31, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21864334

RESUMO

BACKGROUND: Neuronal output is shaped by a balance of excitation and inhibition. How this balance is attained in the central nervous system during development is not well understood, and is complicated by the fact that, in vivo, GABAergic and glycinergic synaptogenesis precedes that of glutamatergic synapses. Here, we determined the distributions of inhibitory postsynaptic sites on the dendritic arbors of individual neurons, and compared their developmental patterns with that of excitatory postsynaptic sites. We focused on retinal ganglion cells (RGCs), the output neurons of the retina, which receive excitatory input from bipolar cells and inhibitory input from amacrine cells. To visualize and map inhibitory postsynaptic sites, we generated transgenic mice in which RGCs express fluorescently tagged Neuroligin 2 (YFP-NL2) under the control of the Thy1 promoter. By labeling RGC dendrites biolistically in YFP-NL2-expressing retinas, we were able to map the spatial distribution and thus densities of inhibitory postsynaptic sites on the dendritic arbors of individual large-field RGCs across ages. RESULTS: We demonstrate that YFP-NL2 is present at inhibitory synapses in the inner plexiform layer by its co-localization with gephyrin, the γ2 subunit of the GABAA receptor and glycine receptors. YFP-NL2 puncta were apposed to the vesicular inhibitory transmitter transporter VGAT but not to CtBP2, a marker of presynaptic ribbons found at bipolar cell terminals. Similar patterns of co-localization with synaptic markers were observed for endogenous NL2. We also verified that expression of YFP-NL2 in the transgenic line did not significantly alter spontaneous inhibitory synaptic transmission onto RGCs. Using these mice, we found that, on average, the density of inhibitory synapses on individual arbors increased gradually until eye opening (postnatal day 15). A small centro-peripheral gradient in density found in mature arbors was apparent at the earliest age we examined (postnatal day 8). Unexpectedly, the adult ratio of inhibitory/excitatory postsynaptic sites was rapidly attained, shortly after glutamatergic synaptogenesis commenced (postnatal day 7). CONCLUSION: Our observations suggest that bipolar and amacrine cell synaptogenesis onto RGCs appear coordinated to rapidly attain a balanced ratio of excitatory and inhibitory synapse densities prior to the onset of visual experience.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Inibição Neural/fisiologia , Neurogênese/fisiologia , Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Sinapses/fisiologia , Regulação para Cima/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Retina/embriologia , Retina/crescimento & desenvolvimento , Transmissão Sináptica/fisiologia , Vias Visuais/citologia , Vias Visuais/embriologia , Vias Visuais/crescimento & desenvolvimento
16.
Bioessays ; 33(1): 61-72, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21110347

RESUMO

In the adult nervous system, chemical neurotransmission between neurons is essential for information processing. However, neurotransmission is also important for patterning circuits during development, but its precise roles have yet to be identified, and some remain highly debated. Here, we highlight viewpoints that have come to be widely accepted or still challenged. We discuss how distinct techniques and model systems employed to probe the developmental role of neurotransmission may reconcile disparate ideas. We underscore how the effects of perturbing neurotransmission during development vary with model systems, the stage of development when transmission is altered, the nature of the perturbation, and how connectivity is assessed. Based on findings in circuits with connectivity arranged in layers, we raise the possibility that there exist constraints in neuronal network design that limit the role of neurotransmission. We propose that activity-dependent mechanisms are effective in refining connectivity patterns only when inputs from different cells are close enough, spatially, to influence each other's outcome.


Assuntos
Neurônios , Transmissão Sináptica , Adulto , Bioensaio , Redes Reguladoras de Genes/fisiologia , Humanos , Modelos Biológicos , Sistema Nervoso/metabolismo , Neurônios/fisiologia , Células Fotorreceptoras de Vertebrados/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
17.
PLoS One ; 6(12): e29560, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22220214

RESUMO

Levetiracetam is an FDA-approved drug used to treat epilepsy and other disorders of the nervous system. Although it is known that levetiracetam binds the synaptic vesicle protein SV2A, how drug binding affects synaptic functioning remains unknown. Here we report that levetiracetam reverses the effects of excess SV2A in autaptic hippocampal neurons. Expression of an SV2A-EGFP fusion protein produced a ∼1.5-fold increase in synaptic levels of SV2, and resulted in reduced synaptic release probability. The overexpression phenotype parallels that seen in neurons from SV2 knockout mice, which experience severe seizures. Overexpression of SV2A also increased synaptic levels of the calcium-sensor protein synaptotagmin, an SV2-binding protein whose stability and trafficking are regulated by SV2. Treatment with levetiracetam rescued normal neurotransmission and restored normal levels of SV2 and synaptotagmin at the synapse. These results indicate that changes in SV2 expression in either direction impact neurotransmission, and suggest that levetiracetam may modulate SV2 protein interactions.


Assuntos
Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Piracetam/análogos & derivados , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Animais , Proteínas de Fluorescência Verde/metabolismo , Levetiracetam , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurotransmissores/metabolismo , Fenótipo , Piracetam/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Transporte Proteico/efeitos dos fármacos , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Sinaptotagminas/metabolismo
18.
J Neurosci ; 29(33): 10221-33, 2009 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-19692597

RESUMO

Understanding how neuromodulators regulate behavior requires investigating their effects on functional neural systems, but also their underlying cellular mechanisms. Utilizing extensively characterized lamprey motor circuits, and the unique access to reticulospinal presynaptic terminals in the intact spinal cord that initiate these behaviors, we investigated effects of presynaptic G-protein-coupled receptors on locomotion from the systems level, to the molecular control of vesicle fusion. 5-HT inhibits neurotransmitter release via a Gbetagamma interaction with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex that promotes kiss-and-run vesicle fusion. In the lamprey spinal cord, we demonstrate that, although presynaptic 5-HT receptors inhibit evoked neurotransmitter release from reticulospinal command neurons, their activation does not abolish locomotion but rather modulates locomotor rhythms. Liberation of presynaptic Gbetagamma causes substantial inhibition of AMPA receptor-mediated synaptic responses but leaves NMDA receptor-mediated components of neurotransmission mostly intact. Because Gbetagamma binding to the SNARE complex is displaced by Ca(2+)-synaptotagmin binding, 5-HT-mediated inhibition displays Ca(2+) sensitivity. We show that, as Ca(2+) accumulates presynaptically during physiological bouts of activity, 5-HT/Gbetagamma-mediated presynaptic inhibition is relieved, leading to a frequency-dependent increase in synaptic concentrations of glutamate. This frequency-dependent phenomenon mirrors a shift in the vesicle fusion mode and a recovery of AMPA receptor-mediated EPSCs from inhibition without a modification of NMDA receptor EPSCs. We conclude that activation of presynaptic 5-HT G-protein-coupled receptors state-dependently alters vesicle fusion properties to shift the weight of NMDA versus AMPA receptor-mediated responses at excitatory synapses. We have therefore identified a novel mechanism in which modification of vesicle fusion modes may profoundly alter locomotor behavior.


Assuntos
Ácido Glutâmico/metabolismo , Fusão de Membrana/fisiologia , Atividade Motora/fisiologia , Terminações Pré-Sinápticas/fisiologia , Vesículas Sinápticas/fisiologia , Animais , Relação Dose-Resposta a Droga , Lampreias , Fusão de Membrana/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Serotonina/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/fisiologia , Vesículas Sinápticas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...