Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 12: 685531, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408657

RESUMO

The well-established sliding filament and cross-bridge theory explain the major biophysical mechanism responsible for a skeletal muscle's active behavior on a cellular level. However, the biomechanical function of skeletal muscles on the tissue scale, which is caused by the complex interplay of muscle fibers and extracellular connective tissue, is much less understood. Mathematical models provide one possibility to investigate physiological hypotheses. Continuum-mechanical models have hereby proven themselves to be very suitable to study the biomechanical behavior of whole muscles or entire limbs. Existing continuum-mechanical skeletal muscle models use either an active-stress or an active-strain approach to phenomenologically describe the mechanical behavior of active contractions. While any macroscopic constitutive model can be judged by it's ability to accurately replicate experimental data, the evaluation of muscle-specific material descriptions is difficult as suitable data is, unfortunately, currently not available. Thus, the discussions become more philosophical rather than following rigid methodological criteria. Within this work, we provide a extensive discussion on the underlying modeling assumptions of both the active-stress and the active-strain approach in the context of existing hypotheses of skeletal muscle physiology. We conclude that the active-stress approach resolves an idealized tissue transmitting active stresses through an independent pathway. In contrast, the active-strain approach reflects an idealized tissue employing an indirect, coupled pathway for active stress transmission. Finally the physiological hypothesis that skeletal muscles exhibit redundant pathways of intramuscular stress transmission represents the basis for considering a mixed-active-stress-active-strain constitutive framework.

2.
J Mech Behav Biomed Mater ; 97: 171-186, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31125890

RESUMO

This work presents a novel microstructurally-based, multi-scale model describing the passive behaviour of skeletal muscle tissue. The model is based on the detailed description of the mechanically relevant parts of the microstructure. The effective constitutive material response is obtained by a homogenisation of mechanical energies and stresses from the micro- to the macroscale. The key feature of the new model is that it does not require any constitutive assumptions or calibration on the macroscale. The effective mechanical response is a pure consequence of the stiffness and structural arrangement of microscopic components. In this sense, the model inherits its direction-dependent properties directly from the microstructure. This is achieved by employing a Voigt-type homogenisation and by utilising for the complex collageneous network of the extracellular matrix an angular integration method. For physiologically realistic microscopic model parameters, this model reveals that muscle tissue exhibits a tensile stiffness that is larger transverse to the muscle fibre than in muscle fibre direction. This highlights that muscle tissue in general does not obey a classical fibre-reinforcement solely for tensile stretches of the muscle fibres but rather a general transversely isotropic behaviour. Moreover, the formulation of the effective macroscopic energy is provided in terms of well-known macroscopic strain invariants, which allows for an easy application of the model in standard numerical settings.


Assuntos
Fibras Musculares Esqueléticas/fisiologia , Estresse Mecânico , Fenômenos Biomecânicos , Calibragem , Simulação por Computador , Matriz Extracelular , Humanos , Teste de Materiais , Modelos Biológicos , Resistência à Tração
3.
Biomech Model Mechanobiol ; 15(6): 1423-1437, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26935301

RESUMO

Although recent research emphasises the possible role of titin in skeletal muscle force enhancement, this property is commonly ignored in current computational models. This work presents the first biophysically based continuum-mechanical model of skeletal muscle that considers, in addition to actin-myosin interactions, force enhancement based on actin-titin interactions. During activation, titin attaches to actin filaments, which results in a significant reduction in titin's free molecular spring length and therefore results in increased titin forces during a subsequent stretch. The mechanical behaviour of titin is included on the microscopic half-sarcomere level of a multi-scale chemo-electro-mechanical muscle model, which is based on the classic sliding-filament and cross-bridge theories. In addition to titin stress contributions in the muscle fibre direction, the continuum-mechanical constitutive relation accounts for geometrically motivated, titin-induced stresses acting in the muscle's cross-fibre directions. Representative simulations of active stretches under maximal and submaximal activation levels predict realistic magnitudes of force enhancement in fibre direction. For example, stretching the model by 20 % from optimal length increased the isometric force at the target length by about 30 %. Predicted titin-induced stresses in the muscle's cross-fibre directions are rather insignificant. Including the presented development in future continuum-mechanical models of muscle function in dynamic situations will lead to more accurate model predictions during and after lengthening contractions.


Assuntos
Actinas/metabolismo , Conectina/metabolismo , Modelos Biológicos , Músculo Esquelético/fisiologia , Animais , Fenômenos Biomecânicos , Simulação por Computador , Ligação Proteica , Sarcômeros/metabolismo , Estresse Mecânico
4.
Int J Numer Method Biomed Eng ; 31(1): e02696, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25369756

RESUMO

Percutaneous vertebroplasty represents a current procedure to effectively reinforce osteoporotic bone via the injection of bone cement. This contribution considers a continuum-mechanically based modelling approach and simulation techniques to predict the cement distributions within a vertebra during injection. To do so, experimental investigations, imaging data and image processing techniques are combined and exploited to extract necessary data from high-resolution µCT image data. The multiphasic model is based on the Theory of Porous Media, providing the theoretical basis to describe within one set of coupled equations the interaction of an elastically deformable solid skeleton, of liquid bone cement and the displacement of liquid bone marrow. The simulation results are validated against an experiment, in which bone cement was injected into a human vertebra under realistic conditions. The major advantage of this comprehensive modelling approach is the fact that one can not only predict the complex cement flow within an entire vertebra but is also capable of taking into account solid deformations in a fully coupled manner. The presented work is the first step towards the ultimate and future goal of extending this framework to a clinical tool allowing for pre-operative cement distribution predictions by means of numerical simulations.


Assuntos
Cimentos Ósseos , Injeções/métodos , Vértebras Lombares/fisiologia , Modelos Biológicos , Algoritmos , Fenômenos Biomecânicos/fisiologia , Simulação por Computador , Difusão , Análise de Elementos Finitos , Humanos , Processamento de Imagem Assistida por Computador , Vértebras Lombares/diagnóstico por imagem , Porosidade , Radiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...