Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 5: e1231, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24832603

RESUMO

Lymphangioleiomyomatosis (LAM) is a female-predominant interstitial lung disease that can lead to respiratory failure. LAM cells typically have inactivating TSC2 mutations, leading to mTORC1 activation. The gender specificity of LAM suggests that estradiol contributes to disease development, yet the underlying pathogenic mechanisms are not completely understood. Using metabolomic profiling, we identified an estradiol-enhanced pentose phosphate pathway signature in Tsc2-deficient cells. Estradiol increased levels of cellular NADPH, decreased levels of reactive oxygen species, and enhanced cell survival under oxidative stress. Mechanistically, estradiol reactivated Akt in TSC2-deficient cells in vitro and in vivo, induced membrane translocation of glucose transporters (GLUT1 or GLUT4), and increased glucose uptake in an Akt-dependent manner. (18)F-FDG-PET imaging demonstrated enhanced glucose uptake in xenograft tumors of Tsc2-deficient cells from estradiol-treated mice. Expression array study identified estradiol-enhanced transcript levels of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway. Consistent with this, G6PD was abundant in xenograft tumors and lung metastatic lesions of Tsc2-deficient cells from estradiol-treated mice. Molecular depletion of G6PD attenuated estradiol-enhanced survival in vitro, and treatment with 6-aminonicotinamide, a competitive inhibitor of G6PD, reduced lung colonization of Tsc2-deficient cells. Collectively, these data indicate that estradiol promotes glucose metabolism in mTORC1 hyperactive cells through the pentose phosphate pathway via Akt reactivation and G6PD upregulation, thereby enhancing cell survival under oxidative stress. Interestingly, a strong correlation between estrogen exposure and G6PD was also found in breast cancer cells. Targeting the pentose phosphate pathway may have therapeutic benefit for LAM and possibly other hormonally dependent neoplasms.


Assuntos
Neoplasias da Mama/enzimologia , Estradiol/metabolismo , Linfangioleiomiomatose/enzimologia , Complexos Multiproteicos/metabolismo , Via de Pentose Fosfato , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Implantes de Medicamento , Ativação Enzimática , Estradiol/administração & dosagem , Feminino , Perfilação da Expressão Gênica , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Humanos , Linfangioleiomiomatose/genética , Linfangioleiomiomatose/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Metabolômica , Camundongos , Camundongos SCID , NADP/metabolismo , Estresse Oxidativo , Interferência de RNA , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fatores de Tempo , Transfecção , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética
2.
Oncogene ; 25(53): 7029-40, 2006 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-16715128

RESUMO

Rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), inhibits tumor cell motility. However, the underlying mechanism is poorly understood. Here, we show that rapamycin inhibited type I insulin-like growth factor (IGF-I)-stimulated motility of a panel of cell lines. Expression of a rapamycin-resistant mutant of mTOR (mTORrr) prevented rapamycin inhibition of cell motility. However, cells expressing a kinase-dead mTORrr remained sensitive to rapamycin. Downregulation of raptor or rictor by RNA interference (RNAi) decreased cell motility. However, only downregulation of raptor mimicked the effect of rapamycin, inhibiting phosphorylation of S6 kinase 1 (S6K1) and 4E-BP1. Cells infected with an adenovirus expressing constitutively active and rapamycin-resistant mutant of p70 S6K1, but not with an adenovirus expressing wild-type S6K1, or a control virus, conferred to resistance to rapamycin. Further, IGF-I failed to stimulate motility of the cells, in which S6K1 was downregulated by RNAi. Moreover, downregulation of eukaryotic initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) by RNAi-attenuated rapamycin inhibition of cell motility. In contrast, expression of constitutively active 4E-BP1 dramatically inhibited IGF-I-stimulated cell motility. The results indicate that both S6K1 and 4E-BP1 pathways, regulated by TORC1, are required for cell motility. Rapamycin inhibits IGF-I-stimulated cell motility, through suppression of both S6K1 and 4E-BP1/eIF4E-signaling pathways, as a consequence of inhibition of mTOR kinase activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular/efeitos dos fármacos , Fosfoproteínas/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Animais , Bovinos , Proteínas de Ciclo Celular , Linhagem Celular , Citoproteção/efeitos dos fármacos , Regulação para Baixo , Ativação Enzimática , Humanos , Fator de Crescimento Insulin-Like I/farmacologia , Camundongos , Fosforilação , Proteínas Quinases/genética , Soro , Serina-Treonina Quinases TOR , Fatores de Transcrição/metabolismo
3.
Mol Cell Biol ; 21(21): 7470-80, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11585927

RESUMO

RSK is a serine/threonine kinase containing two distinct catalytic domains. Found at the terminus of the Ras/extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase (MAPK) kinase cascade, mitogen-stimulated ribosomal S6 kinase (RSK) activity requires multiple inputs. These inputs include phosphorylation of the C-terminal kinase domain activation loop by ERK1/2 and phosphorylation of the N-terminal kinase domain activation loop by phosphoinositide-dependent protein kinase-1 (PDK1). Previous work has shown that upon mitogen stimulation, RSK accumulates in the nucleus. Here we show that prior to nuclear translocation, epidermal growth factor-stimulated RSK1 transiently associates with the plasma membrane. Myristylation of wild-type RSK1 results in an activated enzyme in the absence of added growth factors. When RSK is truncated at the C terminus, the characterized ERK docking is removed and RSK phosphotransferase activity is completely abolished. When myristylated, however, this myristylated C-terminal truncated form (myrCTT) is activated at a level equivalent to myristylated wild-type (myrWT) RSK. Both myrWT RSK and myrCTT RSK can signal to the RSK substrate c-Fos in the absence of mitogen activation. Unlike myrWT RSK, myrCTT RSK is not further activated by serum. Only the myristylated RSK proteins are basally phosphorylated on avian RSK1 serine 381, a site critical for RSK activity. The myristylated and unmyristylated RSK constructs interact with PDK1 upon mitogen stimulation, and this interaction is insensitive to the MEK inhibitor UO126. Because a kinase-inactive CTT RSK can be constitutively activated by targeting to the membrane, we propose that ERK may have a dual role in early RSK activation events: preliminary phosphorylation of RSK and escorting RSK to a membrane-associated complex, where additional MEK/ERK-independent activating inputs are encountered.


Assuntos
Membrana Celular/enzimologia , Proteínas Quinases S6 Ribossômicas/química , Proteínas Quinases S6 Ribossômicas/metabolismo , Western Blotting , Butadienos/farmacologia , Linhagem Celular , Células Cultivadas , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Glutationa Transferase/metabolismo , Humanos , Microscopia de Fluorescência , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Modelos Genéticos , Ácidos Mirísticos/metabolismo , Nitrilas/farmacologia , Fosforilação , Plasmídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Estrutura Terciária de Proteína , Transfecção
4.
J Biol Chem ; 276(49): 46639-46, 2001 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-11583996

RESUMO

Caspase-8 is believed to play an obligatory role in apoptosis initiation by death receptors, but the role of its structural relative, caspase-10, remains controversial. Although earlier evidence implicated caspase-10 in apoptosis signaling by CD95L and Apo2L/TRAIL, recent studies indicated that these death receptor ligands recruit caspase-8 but not caspase-10 to their death-inducing signaling complex (DISC) even in presence of abundant caspase-10. We characterized a series of caspase-10-specific antibodies and found that certain commercially available antibodies cross-react with HSP60, shedding new light on previous results. The majority of 55 lung and breast carcinoma cell lines expressed mRNA for both caspase-8 and -10; however, immunoblot analysis revealed that caspase-10 protein expression was more frequently absent than that of caspase-8, suggesting a possible selective pressure against caspase-10 production in cancer cells. In nontransfected cells expressing both caspases, CD95L and Apo2L/TRAIL recruited endogenous caspase-10 as well as caspase-8 to their DISC, where both enzymes were proteolytically processed with similar kinetics. Caspase-10 recruitment required the adaptor FADD/Mort1, and caspase-10 cleavage in vitro required DISC assembly, consistent with the processing of an apoptosis initiator. Cells expressing only one of the caspases underwent ligand-induced apoptosis, indicating that each caspase can initiate apoptosis independently of the other. Thus, apoptosis signaling by death receptors involves not only caspase-8 but also caspase-10, and both caspases may have equally important roles in apoptosis initiation.


Assuntos
Apoptose , Caspases/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Western Blotting , Caspase 10 , Caspase 8 , Caspase 9 , Caspases/genética , Caspases/imunologia , Eletroforese em Gel de Poliacrilamida , Humanos , Isoenzimas/imunologia , Isoenzimas/metabolismo , Dados de Sequência Molecular , Biossíntese de Proteínas , Células Tumorais Cultivadas
6.
Proc Natl Acad Sci U S A ; 98(18): 10320-5, 2001 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-11504907

RESUMO

PTEN phosphatase acts as a tumor suppressor by negatively regulating the phosphoinositide 3-kinase (PI3K) signaling pathway. It is unclear which downstream components of this pathway are necessary for oncogenic transformation. In this report we show that transformed cells of PTEN(+/-) mice have elevated levels of phosphorylated Akt and activated p70/S6 kinase associated with an increase in proliferation. Pharmacological inactivation of mTOR/RAFT/FRAP reduced neoplastic proliferation, tumor size, and p70/S6 kinase activity, but did not affect the status of Akt. These data suggest that p70/S6K and possibly other targets of mTOR contribute significantly to tumor development and that inhibition of these proteins may be therapeutic for cancer patients with deranged PI3K signaling.


Assuntos
Monoéster Fosfórico Hidrolases/deficiência , Inibidores de Proteínas Quinases , Proteínas Quinases , Proteínas Quinases S6 Ribossômicas/metabolismo , Proteínas Supressoras de Tumor , Alelos , Animais , Sequência de Bases , Transformação Celular Neoplásica/efeitos dos fármacos , Primers do DNA/genética , Feminino , Humanos , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase , Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Transdução de Sinais , Sirolimo/análogos & derivados , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Neoplasias Uterinas/tratamento farmacológico , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patologia
7.
Cell Growth Differ ; 12(6): 297-306, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11432804

RESUMO

Oncogenic Ras induces cells to undergo apoptosis after inhibition of protein kinase C (PKC) activity. The integration of differential signaling pathways is required for full execution of apoptosis. In this study, we used Jurkat as well as Fas/FADD-defective cell lines expressing v-ras to determine the upstream elements required for activation of the caspase cascade in PKC/Ras-mediated apoptosis. During this Ras-induced apoptotic process, caspase-8 was activated, possibly through its binding to Fas-associated death domain (FADD), in Jurkat/ras and Jurkat/Fas(m)/ras cells but not in Jurkat/FADD(m)/ras cells. c-Jun NH(2)-terminal kinase (JNK) was activated in all three cell lines expressing ras in response to apoptotic stimulation. Suppression of JNK by dn-JNK1 blocked the interaction of FADD and caspase-8 and partially protected Jurkat/ras and Jurkat/Fas(m)/ras cells from apoptosis. However, dn-JNK1 had no effect on PKC/Ras-induced apoptosis in Jurkat/FADD(m)/ras cells. The results indicate that FADD/caspase-8 signaling is involved in PKC/Ras-mediated apoptosis, and JNK may be an upstream effector of caspase activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Apoptose , Proteínas de Transporte/metabolismo , Caspases/metabolismo , Receptor fas/metabolismo , Proteínas ras/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3 , Caspase 8 , Caspase 9 , Grupo dos Citocromos c/metabolismo , Ativação Enzimática , Proteína de Domínio de Morte Associada a Fas , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , Células Jurkat , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais
8.
J Biol Chem ; 276(35): 32585-90, 2001 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-11384965

RESUMO

Fas, a death domain-containing member of the tumor necrosis factor receptor family and its ligand FasL have been predominantly studied with respect to their capability to induce cell death. However, a few studies indicate a proliferation-inducing signaling activity of these molecules too. We describe here a novel signaling pathway of FasL and the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) that triggers transcriptional activation of the proto-oncogene c-fos, a typical target gene of mitogenic pathways. FasL- and TRAIL-mediated up-regulation of c-Fos was completely dependent on the presence of Fas-associated death domain protein (FADD) and caspase-8, but caspase activity seemed to be dispensable as a pan inhibitor of caspases had no inhibitory effect. Upon overexpression of the long splice form of cellular FADD-like interleukin-1-converting enzyme (FLICE) inhibitory protein (cFLIP) in Jurkat cells, FasL- and TRAIL-induced up-regulation of c-Fos was almost completely blocked. The short splice form of FLIP, however, showed a rather stimulatory effect on c-Fos induction. Together these data demonstrate the existence of a death receptor-induced, FADD- and caspase-8-dependent pathway leading to c-Fos induction that is inhibited by the long splice form FLIP-L.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/metabolismo , Caspases/metabolismo , Regulação da Expressão Gênica , Genes fos , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Receptor fas/fisiologia , Processamento Alternativo , Anticorpos Monoclonais/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD , Proteínas de Transporte/genética , Caspase 8 , Caspase 9 , Proteína Ligante Fas , Proteína de Domínio de Morte Associada a Fas , Humanos , Células Jurkat , Modelos Biológicos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Recombinantes/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF , Transfecção
9.
J Biol Chem ; 276(15): 12466-75, 2001 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-11278584

RESUMO

The anti-tumorigenic and anti-proliferative effects of N-alpha-tosyl-l-phenylalanyl chloromethyl ketone (TPCK) have been known for more than three decades. Yet little is known about the discrete cellular targets of TPCK controlling these effects. Previous work from our laboratory showed TPCK, like the immunosuppressant rapamycin, to be a potent inhibitor of the 70-kilodalton ribosomal S6 kinase 1 (S6K1), which mediates events involved in cell growth and proliferation. We show here that rapamycin and TPCK display distinct inhibitory mechanisms on S6K1 as a rapamycin-resistant form of S6K1 was TPCK-sensitive. Additionally, we show that TPCK inhibited the activation of the related kinase and proto-oncogene Akt. Upstream regulators of S6K1 and Akt include phosphoinositide 3-kinase (PI 3-K) and 3-phosphoinositide-dependent kinase 1 (PDK1). Whereas TPCK had no effect on either mitogen-regulated PI 3-K activity or total cellular PDK1 activity, TPCK prevented phosphorylation of the PDK1 regulatory sites in S6K1 and Akt. Furthermore, whereas both PDK1 and the mitogen-activated protein kinase (MAPK) are required for full activation of the 90-kilodalton ribosomal S6 kinase (RSK), TPCK inhibited RSK activation without inhibiting MAPK activation. Consistent with the capacity of RSK and Akt to mediate a cell survival signal, in part through phosphorylation of the pro-apoptotic protein BAD, TPCK reduced BAD phosphorylation and led to cell death in interleukin-3-dependent 32D cells. Finally, in agreement with results seen in embryonic stem cells lacking PDK1, protein kinase A activation was not inhibited by TPCK showing TPCK specificity for mitogen-regulated PDK1 signaling. TPCK inhibition of PDK1 signaling thus disables central kinase cascades governing diverse cellular processes including proliferation and survival and provides an explanation for its striking biological effects.


Assuntos
Anticarcinógenos/farmacologia , Divisão Celular/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tosilfenilalanil Clorometil Cetona/farmacologia , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Células 3T3 , Animais , Linhagem Celular Transformada , Ativação Enzimática , Humanos , Camundongos , Fosforilação , Proto-Oncogene Mas , Proteínas Quinases S6 Ribossômicas/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas/metabolismo
10.
J Cell Biol ; 152(5): 959-70, 2001 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-11238452

RESUMO

The cargo that the molecular motor kinesin moves along microtubules has been elusive. We searched for binding partners of the COOH terminus of kinesin light chain, which contains tetratricopeptide repeat (TPR) motifs. Three proteins were found, the c-jun NH(2)-terminal kinase (JNK)-interacting proteins (JIPs) JIP-1, JIP-2, and JIP-3, which are scaffolding proteins for the JNK signaling pathway. Concentration of JIPs in nerve terminals requires kinesin, as evident from the analysis of JIP COOH-terminal mutants and dominant negative kinesin constructs. Coprecipitation experiments suggest that kinesin carries the JIP scaffolds preloaded with cytoplasmic (dual leucine zipper-bearing kinase) and transmembrane signaling molecules (the Reelin receptor, ApoER2). These results demonstrate a direct interaction between conventional kinesin and a cargo, indicate that motor proteins are linked to their membranous cargo via scaffolding proteins, and support a role for motor proteins in spatial regulation of signal transduction pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/metabolismo , Cinesinas/metabolismo , Transdução de Sinais , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular , Cinesinas/química , Cinesinas/genética , Proteínas Relacionadas a Receptor de LDL , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Modelos Biológicos , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Dados de Sequência Molecular , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Testes de Precipitina , Ligação Proteica , Ratos , Receptores de Lipoproteínas/metabolismo , Proteína Reelina , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido
11.
J Biol Chem ; 276(11): 7884-91, 2001 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-11108711

RESUMO

Ribosomal S6 kinase (S6K1), through phosphorylation of the 40 S ribosomal protein S6 and regulation of 5'-terminal oligopyrimidine tract mRNAs, is an important regulator of cellular translational capacity. S6K1 has also been implicated in regulation of cell size. We have recently identified S6K2, a homolog of S6K1, which phosphorylates S6 in vitro and is regulated by the phosphatidylinositide 3-kinase (PI3-K) and mammalian target of rapamycin pathways in vivo. Here, we characterize S6K2 regulation by PI3-K signaling intermediates and compare its regulation to that of S6K1. We report that S6K2 is activated similarly to S6K1 by the PI3-K effectors phosphoinositide-dependent kinase 1, Cdc42, Rac, and protein kinase Czeta but that S6K2 is more sensitive to basal activation by myristoylated protein kinase Czeta than is S6K1. The C-terminal sequence of S6K2 is divergent from that of S6K1. We find that the S6K2 C terminus plays a greater role in S6K2 regulation than does the S6K1 C terminus by functioning as a potent inhibitor of activation by various agonists. Removal of the S6K2 C terminus results in an enzyme that is hypersensitive to agonist-dependent activation. These data suggest that S6K1 and S6K2 are similarly activated by PI3-K effectors but that sequences unique to S6K2 contribute to stronger inhibition of its kinase activity. Understanding the regulation of the two S6K homologs may provide insight into the physiological roles of these kinases.


Assuntos
Isoenzimas/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Quinases S6 Ribossômicas/metabolismo , Células Cultivadas , Humanos , Proteína Quinase C/fisiologia , Proteína cdc42 de Ligação ao GTP/fisiologia
12.
J Biol Chem ; 276(11): 7892-8, 2001 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-11108720

RESUMO

Ribosomal S6 kinase 2 (S6K2) is a recently identified serine/threonine protein kinase that phosphorylates the 40 S ribosomal protein S6 in vitro. S6K2 is highly homologous to S6K1 in the core kinase and linker regulatory domains but differs from S6K1 in the N- and C-terminal regions and is differently localized primarily to the nucleus because of a C-terminal nuclear localization signal unique to S6K2. We have recently demonstrated that S6K2 is regulated similarly to S6K1 by the mammalian target of rapamycin pathway and by multiple PI3-K pathway effectors in vivo. However, deletion of the C-terminal domain of S6K2 enhances kinase activity, whereas analogous deletion of S6K1 is inhibitory. Here, we characterize the S6K2 C-terminal motifs that confer this differential regulation. We demonstrate that the inhibitory effects of the S6K2 C-terminal domain are only partly attributable to the nuclear localization signal but that three C-terminal proline-directed potential mitogen-activated protein kinase phosphorylation sites are critical mediators of this inhibitory effect. Site-specific mutation of these sites to alanine completely desensitizes S6K2 to activating inputs, whereas mutation to aspartic acid to mimic phosphorylation results in an activated enzyme which is hypersensitive to activating inputs. Pretreatment of cells with the mitogen-activated protein-extracellular signal-regulated kinase kinase (MEK) inhibitor U0126 inhibited S6K2 activation to a greater extent than S6K1. Furthermore, S6K2 mutants with C-terminal deletion or acidic phosphorylation site mutations displayed greatly reduced U0126 sensitivity. Thus, MEK-dependent inputs to C-terminal phosphorylation sites appear to be essential for relief of S6K2 inhibition but less critical for activation of S6K1. These data suggest a mechanism by which weak PI3-K agonists can regulate S6 phosphorylation and selective translation in the presence of mitogen-activated protein kinase signaling.


Assuntos
Isoenzimas/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/fisiologia , Proteínas Quinases S6 Ribossômicas/antagonistas & inibidores , Butadienos/farmacologia , Células Cultivadas , Ativação Enzimática , Fator de Crescimento Epidérmico/farmacologia , Humanos , Isoenzimas/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Nitrilas/farmacologia , Fosfatidilinositol 3-Quinases/fisiologia , Fosforilação , Proteínas Quinases S6 Ribossômicas/metabolismo
13.
J Biol Chem ; 275(49): 38905-11, 2000 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-10988287

RESUMO

p53's dual regulation of arrest versus apoptosis may underlie tumor-selective effects of anti-cancer therapy. p53's apoptotic effect has been suggested to involve both transcription-dependent and -independent mechanisms. It is shown here that caspase-8 is activated early in cells undergoing p53-mediated apoptosis and in S100 cell-free extracts that recapitulate transcription-independent apoptosis. Depletion or inactivation of caspase-8 either in cells or cell-free extracts completely prevents this transcription-independent apoptosis and significantly attenuates overall death induced by wild-type p53. Importantly, caspase-8 activation appears to be independent of FADD, and caspase-8 is found in a novel 600-kDa complex following p53 activation. These findings highlight the roles of both transcription-dependent and -independent apoptosis by p53 and identify an essential role for caspase-8 in the transcription-independent pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Apoptose/fisiologia , Caspases/metabolismo , Transcrição Gênica/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas de Transporte/metabolismo , Caspase 8 , Caspase 9 , Sistema Livre de Células , Células Cultivadas , Proteína de Domínio de Morte Associada a Fas , Fibroblastos/citologia , Fibroblastos/fisiologia , Genes p53 , Camundongos , Proteína Supressora de Tumor p53/genética
14.
Immunity ; 12(6): 599-609, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10894160

RESUMO

Apoptosis induced by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/APO-2L) has been shown to exert important functions during various immunological processes. The involvement of the death adaptor proteins FADD/MORT1, TRADD, and RIP and the apoptosis-initiating caspases-8 and -10 in death signaling by the two death-inducing TRAIL receptors 1 and 2 (TRAIL-R1 and TRAIL-R2) are controversial. Analysis of the native TRAIL death-inducing signaling complex (DISC) revealed ligand-dependent recruitment of FADD/MORT1 and caspase-8. Differential precipitation of ligand-stimulated TRAIL receptors demonstrated that FADD/MORT1 and caspase-8 were recruited to TRAIL-R1 and TRAIL-R2 independently of each other. FADD/MORT1- and caspase-8-deficient Jurkat cells expressing only TRAIL-R2 were resistant to TRAIL-induced apoptosis. Thus, FADD/MORT1 and caspase-8 are essential for apoptosis induction via TRAIL-R2.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Apoptose/imunologia , Proteínas de Transporte/fisiologia , Caspases/fisiologia , Receptores do Fator de Necrose Tumoral/fisiologia , Receptor fas/fisiologia , Linfócitos B/citologia , Linfócitos B/enzimologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Proteínas de Transporte/metabolismo , Caspase 8 , Caspase 9 , Caspases/metabolismo , Linhagem Celular , Proteína de Domínio de Morte Associada a Fas , Humanos , Células Jurkat , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Receptores do Fator de Necrose Tumoral/biossíntese , Transdução de Sinais/imunologia , Linfócitos T/citologia , Linfócitos T/enzimologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Tumorais Cultivadas
16.
Curr Biol ; 10(3): 127-35, 2000 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-10679322

RESUMO

BACKGROUND: Growth factors activate an array of cell survival signaling pathways. Mitogen-activated protein (MAP) kinases transduce signals emanating from their upstream activators MAP kinase kinases (MEKs). The MEK-MAP kinase signaling cassette is a key regulatory pathway promoting cell survival. The downstream effectors of the mammalian MEK-MAP kinase cell survival signal have not been previously described. RESULTS: We identify here a pro-survival role for the serine/threonine kinase Rsk1, a downstream target of the MEK-MAP kinase signaling pathway. In cells that are dependent on interleukin-3 (IL-3) for survival, pharmacological inhibition of MEKs antagonized the IL-3 survival signal. In the absence of IL-3, a kinase-dead Rsk1 mutant eliminated the survival effect afforded by activated MEK. Conversely, a novel constitutively active Rsk1 allele restored the MEK-MAP kinase survival signal. Experiments in vitro and in vivo demonstrated that Rsk1 directly phosphorylated the pro-apoptotic protein Bad at the serine residues that, when phosphorylated, abrogate Bad's pro-apoptotic function. Constitutively active Rsk1 caused constitutive Bad phosphorylation and protection from Bad-modulated cell death. Kinase-inactive Rsk1 mutants antagonize Bad phosphorylation. Bad mutations that prevented phosphorylation by Rsk1 also inhibited Rsk1-mediated cell survival. CONCLUSIONS: These data support a model in which Rsk1 transduces the mammalian MEK-MAP kinase signal in part by phosphorylating Bad.


Assuntos
Apoptose , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Quinases S6 Ribossômicas 90-kDa , Proteínas Quinases S6 Ribossômicas/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Sobrevivência Celular , Humanos , Interleucina-3/farmacologia , Interleucina-3/fisiologia , Rim , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/genética , Fosforilação , Plasmídeos , Proteínas Quinases S6 Ribossômicas/genética , Transdução de Sinais , Transfecção , Proteína de Morte Celular Associada a bcl
17.
Blood ; 95(8): 2552-8, 2000 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-10753834

RESUMO

Granulocyte-macrophage colony-stimulating factor (GM-CSF) activates several kinases and transcription factors through interaction with a heterodimeric receptor complex. We previously demonstrated that phosphorylation of the cyclic adenosine monophosphate (cAMP) response element-binding protein, CREB, occurs through a protein kinase A-independent pathway and is required for GM-CSF-induced transcriptional activation of the immediate early gene, early growth response-1 (egr-1). Recent reports indicate that receptor tyrosine kinases can induce CREB phosphorylation through activation of pp90RSK. We performed immune complex kinase assays in the human myeloid leukemic cell line, TF-1, which revealed that GM-CSF induced pp90RSK activation and phosphorylation of CREB within 5 minutes of stimulation. Transfection with the kinase-defective pp90RSK expression plasmid demonstrated a statistically significant decrease in transcriptional activation of a -116 CAT/egr-1 promoter construct in response to GM-CSF. Furthermore, activation of pp90RSK, CREB and egr-1 in GM-CSF-treated cells was inhibited by the presence of the inhibitor, PD98059. In this study, we report that GM-CSF induces CREB phosphorylation and egr-1 transcription by activating pp90RSK through an MEK-dependent signaling pathway. (Blood. 2000;95:2552-2558)


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/fisiologia , Proteínas Quinases S6 Ribossômicas/fisiologia , Transdução de Sinais/efeitos dos fármacos , Ativação Enzimática , Fator Estimulador de Colônias de Granulócitos e Macrófagos/fisiologia , Humanos , Fosforilação , Transfecção , Células Tumorais Cultivadas
18.
Curr Biol ; 9(15): 810-20, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10469565

RESUMO

BACKGROUND: The rsk1 gene encodes the 90 kDa ribosomal S6 kinase 1 (RSK1) protein, which contains two kinase domains. RSK1, which is involved in regulating cell survival and proliferation, lies at the end of the signaling cascade mediated by the extracellular signal-regulated kinase (ERK) subfamily of mitogen-activated protein (MAP) kinases. ERK activation and subsequent phosphorylation of the RSK1 carboxy-terminal catalytic loop stimulates phosphotransferase activity in the RSK1 amino-terminal kinase domain. When activated, RSK1 phosphorylates both nuclear and cytoplasmic substrates through this amino-terminal catalytic domain. It is thought that stimulation of the ERK/MAP kinase pathway is sufficient for RSK1 activation, but how ERK phosphorylation activates the RSK1 amino-terminal kinase domain is not known. RESULTS: The individual isolated RSK1 kinase domains were found to be under regulatory control. In vitro kinase assays established that ERK phosphorylates RSK1 within the carboxy-terminal kinase domain, and the phosphoinositide-dependent kinase 1 (PDK1) phosphorylates RSK1 within the amino-terminal kinase domain. In transiently transfected HEK 293E cells, PDK1 alone stimulated phosphotransferase activity of an isolated RSK1 amino-terminal kinase domain. Nevertheless, activation of full-length RSK1 in the absence of serum required activation by both PDK1 and ERK. CONCLUSIONS: RSK1 is phosphorylated by PDK1 in the amino-terminal kinase-activation loop, and by ERK in the carboxy-terminal kinase-activation loop. Activation of phosphotransferase activity of full-length RSK1 in vivo requires both PDK1 and ERK. RSK1 activation is therefore regulated by both the mitogen-stimulated ERK/MAP kinase pathway and a PDK1-dependent pathway.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular , Ativação Enzimática , Humanos , Técnicas In Vitro , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Quinases S6 Ribossômicas/química , Proteínas Quinases S6 Ribossômicas/genética , Transdução de Sinais
19.
Oncogene ; 18(36): 5108-14, 1999 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-10490847

RESUMO

Rapamycin is an immunosuppressant which antagonizes cellular proliferation by inhibiting the function of mTOR. The mTOR:FKBP12: rapamycin complex blocks G1/S transition by inhibiting downstream targets essential for cell cycle progression. One such target is p70S6k1 (S6K1), a serine/threonine kinase which is inactivated by the mTOR : FKBP12 : rapamycin complex, and which has been linked to translational control by virtue of its ability to phosphorylate the ribosomal protein S6. In the current work, we describe cloning and characterization of a novel S6K1 homolog, p54 S6 kinase 2 (p54S6k2/S6K2). Similar to S6K1, S6K2 is activated by mitogens and by constitutively active PI3K, and is inhibited by rapamycin as well as wortmannin. Differences between activation of S6K1 and S6K2 by PDK1 were observed, suggesting potential differences in the regulation of these homologs. Strikingly, S6K2 activity and S6 phosphorylation were both intact in S6K1-/-ES cell, indicating a possible role for S6K2 in in vivo S6 phosphorylation. Interestingly, we found two isoforms of S6K2 which are localized to distinct cellular compartments; the smaller form resides in the detergent-soluble fraction, whereas the larger form is found in the particulate fraction. Our findings demonstrate the existence of a family of rapamycin-sensitive protein kinases potentially involved in S6 phosphorylation, translational control, and transduction of mTOR signals.


Assuntos
Isoenzimas/genética , Proteínas Quinases S6 Ribossômicas/genética , Homologia de Sequência do Ácido Nucleico , Linhagem Celular , Etiquetas de Sequências Expressas , Isoenzimas/metabolismo , Dados de Sequência Molecular , Fosforilação , Proteínas Quinases S6 Ribossômicas/metabolismo , Sirolimo/farmacologia
20.
Neuron ; 22(3): 623-33, 1999 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10197541

RESUMO

We show here that caspase-8 is required for the death of primary rat neurons induced by an expanded polyglutamine repeat (Q79). Expression of Q79 recruited and activated caspase-8. Inhibition of caspase-8 blocked polyglutamine-induced cell death. Coexpression of Q79 with the caspase inhibitor CrmA, a dominant-negative mutant of FADD (FADD DN), Bcl-2, or Bcl-xL, but not an N-terminally tagged Bcl-xL, prevented the recruitment of caspase-8 and inhibited polyglutamine-induced cell death. Furthermore, Western blot analysis revealed the presence of activated caspase-8 in the insoluble fraction of affected brain regions from Huntington's disease (HD) patients but not in those from neurologically unremarkable controls, suggesting the relocation and activation of caspase-8 during the pathogenesis of HD. These results suggest an essential role of caspase-8 in HD-related neural degenerative diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Apoptose/fisiologia , Caspases/fisiologia , Neurônios/fisiologia , Peptídeos/fisiologia , Proteínas Virais , Animais , Proteínas de Transporte/biossíntese , Proteínas de Transporte/metabolismo , Caspase 8 , Caspase 9 , Inibidores de Caspase , Caspases/genética , Linhagem Celular , Inibidores de Cisteína Proteinase/biossíntese , Inibidores de Cisteína Proteinase/metabolismo , Ativação Enzimática , Proteína de Domínio de Morte Associada a Fas , Técnica Direta de Fluorescência para Anticorpo , Humanos , Immunoblotting , Microscopia Confocal , Mutação , Neurônios/enzimologia , Plasmídeos , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Sequências Repetitivas de Aminoácidos , Serpinas/biossíntese , Serpinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...