Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 637, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245516

RESUMO

Contextual cues and prior evidence guide human goal-directed behavior. The neurophysiological mechanisms that implement contextual priors to guide subsequent actions in the human brain remain unclear. Using intracranial electroencephalography (iEEG), we demonstrate that increasing uncertainty introduces a shift from a purely oscillatory to a mixed processing regime with an additional ramping component. Oscillatory and ramping dynamics reflect dissociable signatures, which likely differentially contribute to the encoding and transfer of different cognitive variables in a cue-guided motor task. The results support the idea that prefrontal activity encodes rules and ensuing actions in distinct coding subspaces, while theta oscillations synchronize the prefrontal-motor network, possibly to guide action execution. Collectively, our results reveal how two key features of large-scale neural population activity, namely continuous ramping dynamics and oscillatory synchrony, jointly support rule-guided human behavior.


Assuntos
Encéfalo , Sinais (Psicologia) , Humanos , Encéfalo/fisiologia , Ritmo Teta/fisiologia , Eletroencefalografia
2.
iScience ; 26(10): 107653, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37674986

RESUMO

Emerging research supports a role of the insula in human cognition. Here, we used intracranial EEG to investigate the spatiotemporal dynamics in the insula during a verbal working memory (vWM) task. We found robust effects for theta, beta, and high frequency activity (HFA) during probe presentation requiring a decision. Theta band activity showed differential involvement across left and right insulae while sequential HFA modulations were observed along the anteroposterior axis. HFA in anterior insula tracked decision making and subsequent HFA was observed in posterior insula after the behavioral response. Our results provide electrophysiological evidence of engagement of different insula subregions in both decision-making and response monitoring during vWM and expand our knowledge of the role of the insula in complex human behavior.

3.
Proc Natl Acad Sci U S A ; 120(28): e2220523120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399398

RESUMO

The human prefrontal cortex (PFC) constitutes the structural basis underlying flexible cognitive control, where mixed-selective neural populations encode multiple task features to guide subsequent behavior. The mechanisms by which the brain simultaneously encodes multiple task-relevant variables while minimizing interference from task-irrelevant features remain unknown. Leveraging intracranial recordings from the human PFC, we first demonstrate that competition between coexisting representations of past and present task variables incurs a behavioral switch cost. Our results reveal that this interference between past and present states in the PFC is resolved through coding partitioning into distinct low-dimensional neural states; thereby strongly attenuating behavioral switch costs. In sum, these findings uncover a fundamental coding mechanism that constitutes a central building block of flexible cognitive control.


Assuntos
Cognição , Córtex Pré-Frontal , Humanos
4.
Cereb Cortex ; 33(5): 1876-1894, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35639957

RESUMO

It is largely unknown how attention adapts to the timing of acoustic stimuli. To address this, we investigated how hemispheric lateralization of alpha (7-13 Hz) and beta (14-24 Hz) oscillations, reflecting voluntary allocation of auditory spatial attention, is influenced by tempo and predictability of sounds. We recorded electroencephalography while healthy adults listened to rhythmic sound streams with different tempos that were presented dichotically to separate ears, thus permitting manipulation of spatial-temporal attention. Participants responded to stimulus-onset-asynchrony (SOA) deviants (-90 ms) for given tones in the attended rhythm. Rhythm predictability was controlled via the probability of SOA deviants per block. First, the results revealed hemispheric lateralization of beta-power according to attention direction, reflected as ipsilateral enhancement and contralateral suppression, which was amplified in high- relative to low-predictability conditions. Second, fluctuations in the time-resolved beta-lateralization aligned more strongly with the attended than the unattended tempo. Finally, a trend-level association was found between the degree of beta-lateralization and improved ability to distinguish between SOA-deviants in the attended versus unattended ear. Differently from previous studies, we presented continuous rhythms in which task-relevant and irrelevant stimuli had different tempo, thereby demonstrating that temporal alignment of beta-lateralization with attended sounds reflects top-down attention to sound timing.


Assuntos
Percepção Auditiva , Eletroencefalografia , Adulto , Humanos , Eletroencefalografia/métodos , Estimulação Acústica , Som
5.
Front Neuroinform ; 16: 788685, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277477

RESUMO

Introduction: Intracranial electrodes are implanted in patients with drug-resistant epilepsy as part of their pre-surgical evaluation. This allows the investigation of normal and pathological brain functions with excellent spatial and temporal resolution. The spatial resolution relies on methods that precisely localize the implanted electrodes in the cerebral cortex, which is critical for drawing valid inferences about the anatomical localization of brain function. Multiple methods have been developed to localize the electrodes, mainly relying on pre-implantation MRI and post-implantation computer tomography (CT) images. However, they are hard to validate because there is no ground truth data to test them and there is no standard approach to systematically quantify their performance. In other words, their validation lacks standardization. Our work aimed to model intracranial electrode arrays and simulate realistic implantation scenarios, thereby providing localization algorithms with new ways to evaluate and optimize their performance. Results: We implemented novel methods to model the coordinates of implanted grids, strips, and depth electrodes, as well as the CT artifacts produced by these. We successfully modeled realistic implantation scenarios, including different sizes, inter-electrode distances, and brain areas. In total, ∼3,300 grids and strips were fitted over the brain surface, and ∼850 depth electrode arrays penetrating the cortical tissue were modeled. Realistic CT artifacts were simulated at the electrode locations under 12 different noise levels. Altogether, ∼50,000 thresholded CT artifact arrays were simulated in these scenarios, and validated with real data from 17 patients regarding the coordinates' spatial deformation, and the CT artifacts' shape, intensity distribution, and noise level. Finally, we provide an example of how the simulation platform is used to characterize the performance of two cluster-based localization methods. Conclusion: We successfully developed the first platform to model implanted intracranial grids, strips, and depth electrodes and realistically simulate thresholded CT artifacts and their noise. These methods provide a basis for developing more complex models, while simulations allow systematic evaluation of the performance of electrode localization techniques. The methods described in this article, and the results obtained from the simulations, are freely available via open repositories. A graphical user interface implementation is also accessible via the open-source iElectrodes toolbox.

6.
J Cogn Neurosci ; 33(9): 1956-1975, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34375421

RESUMO

Anticipation, monitoring, and evaluation of the outcome of one's actions are at the core of proactive control. Individuals with lesions to OFC often demonstrate behaviors that indicate a lack of recognition or concern for the negative effects of their actions. Altered action timing has also been reported in these patients. We investigated the role of OFC in predicting and monitoring the sensory outcomes of self-paced actions. We studied patients with focal OFC lesions (n = 15) and healthy controls (n = 20) while they produced actions that infrequently evoked unexpected outcomes. Participants performed a self-paced, random generation task where they repeatedly pressed right and left buttons that were associated with specific sensory outcomes: a 1- and 2-kHz tone, respectively. Occasional unexpected action outcomes occurred (mismatch) that inverted the learned button-tone association (match). We analyzed ERPs to the expected and unexpected outcomes as well as action timing. Neither group showed post-mismatch slowing of button presses, but OFC patients had a higher number of fast button presses, indicating that they were inferior to controls at producing regularly timed actions. Mismatch trials elicited enhanced N2b-P3a responses across groups as indicated by the significant main effect of task condition. Planned within-group analyses showed, however, that patients did not have a significant condition effect, suggesting that the result of the omnibus analysis was driven primarily by the controls. Altogether, our findings indicate that monitoring of action timing and the sensory outcomes of self-paced actions as indexed by ERPs is impacted by OFC damage.


Assuntos
Potenciais Evocados , Córtex Pré-Frontal , Humanos
7.
Sci Rep ; 10(1): 7975, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409738

RESUMO

The brain responds to violations of expected rhythms, due to extraction- and prediction of the temporal structure in auditory input. Yet, it is unknown how probability of rhythm violations affects the overall rhythm predictability. Another unresolved question is whether predictive processes are independent of attention processes. In this study, EEG was recorded while subjects listened to rhythmic sequences. Predictability was manipulated by changing the stimulus-onset-asynchrony (SOA deviants) for given tones in the rhythm. When SOA deviants were inserted rarely, predictability remained high, whereas predictability was lower with more frequent SOA deviants. Dichotic tone-presentation allowed for independent manipulation of attention, as specific tones of the rhythm were presented to separate ears. Attention was manipulated by instructing subjects to attend to tones in one ear only, while keeping the rhythmic structure of tones constant. The analyses of event-related potentials revealed an attenuated N1 for tones when rhythm predictability was high, while the N1 was enhanced by attention to tones. Bayesian statistics revealed no interaction between predictability and attention. A right-lateralization of attention effects, but not predictability effects, suggested potentially different cortical processes. This is the first study to show that probability of rhythm violation influences rhythm predictability, independent of attention.


Assuntos
Atenção , Percepção Auditiva , Encéfalo/fisiologia , Potenciais Evocados Auditivos , Estimulação Acústica , Adulto , Mapeamento Encefálico , Análise de Dados , Eletroencefalografia , Potenciais Evocados , Feminino , Voluntários Saudáveis , Humanos , Masculino , Adulto Jovem
8.
Curr Biol ; 30(6): 1152-1159.e3, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32142694

RESUMO

Experimental findings show the ubiquitous presence of graded responses and tuning curves in the neocortex, particularly in visual areas [1-15]. Among these, inferotemporal-cortex (IT) neurons respond to complex visual stimuli, but differences in the neurons' responses can be used to distinguish the stimuli eliciting the responses [8, 9, 16-18]. The IT projects directly to the medial temporal lobe (MTL) [19], where neurons respond selectively to different pictures of specific persons and even to their written and spoken names [20-22]. However, it is not clear whether this is done through a graded coding, as in the neocortex, or a truly invariant code, in which the response-eliciting stimuli cannot be distinguished from each other. To address this issue, we recorded single neurons during the repeated presentation of different stimuli (pictures and written and spoken names) corresponding to the same persons. Using statistical tests and a decoding approach, we found that only in a minority of cases can the different pictures of a given person be distinguished from the neurons' responses and that in a larger proportion of cases, the responses to the pictures were different to the ones to the written and spoken names. We argue that MTL neurons tend to lack a representation of sensory features (particularly within a sensory modality), which can be advantageous for the memory function attributed to this area [23-25], and that a full representation of memories is given by a combination of mostly invariant coding in the MTL with a representation of sensory features in the neocortex.


Assuntos
Hipocampo/fisiologia , Neocórtex/fisiologia , Neurônios/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Lobo Temporal/fisiologia , Adulto , Argentina , Mapeamento Encefálico , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Célula Única , Adulto Jovem
9.
Cortex ; 121: 189-200, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31629197

RESUMO

The human insula is known to be involved in auditory processing, but knowledge about its precise functional role and the underlying electrophysiology is limited. To assess its role in automatic auditory deviance detection we analyzed the EEG high frequency activity (HFA; 75-145 Hz) and ERPs from 90 intracranial insular channels across 16 patients undergoing pre-surgical intracranial monitoring for epilepsy treatment. Subjects passively listened to a stream of standard and deviant tones differing in four physical dimensions: intensity, frequency, location or time. HFA responses to auditory stimuli were found in the short and long gyri, and the anterior, superior, and inferior segments of the circular sulcus of the insular cortex. Only a subset of channels in the inferior segment of the circular sulcus of the insula showed HFA deviance detection responses, i.e., a greater and longer latency response to specific deviants relative to standards. Auditory deviancy processing was also later in the insula when compared with the superior temporal cortex. ERP results were more widespread and supported the HFA insular findings. These results provide evidence that the human insula is engaged during auditory deviance detection.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos/fisiologia , Potenciais Evocados/fisiologia , Adulto , Atenção/fisiologia , Mapeamento Encefálico/métodos , Eletrocorticografia/métodos , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tempo de Reação/fisiologia , Adulto Jovem
10.
Front Hum Neurosci ; 13: 445, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998097

RESUMO

Orbitofrontal cortex (OFC) is implicated in multiple cognitive processes, including inhibitory control, context memory, recency judgment, and choice behavior. Despite an emerging understanding of the role of OFC in memory and executive control, its necessity for core working memory (WM) operations remains undefined. Here, we assessed the impact of OFC damage on interference effects in WM using a Recent Probes task based on the Sternberg item-recognition task (1966). Subjects were asked to memorize a set of letters and then indicate whether a probe letter was presented in a particular set. Four conditions were created according to the forthcoming response ("yes"/"no") and the recency of the probe (presented in the previous trial set or not). We compared behavioral and electroencephalography (EEG) responses between healthy subjects (n = 14) and patients with bilateral OFC damage (n = 14). Both groups had the same recency pattern of slower reaction time (RT) when the probe was presented in the previous trial but not in the current one, reflecting the proactive interference (PI). The within-group electrophysiological results showed no condition difference during letter encoding and maintenance. In contrast, event-related potentials (ERPs) to probes showed distinct within-group condition effects, and condition by group effects. The response and recency effects for controls occurred within the same time window (300-500 ms after probe onset) and were observed in two distinct spatial groups including right centro-posterior and left frontal electrodes. Both clusters showed ERP differences elicited by the response effect, and one cluster was also sensitive to the recency manipulation. Condition differences for the OFC group involved two different clusters, encompassing only left hemisphere electrodes and occurring during two consecutive time windows (345-463 ms and 565-710 ms). Both clusters were sensitive to the response effect, but no recency effect was found despite the behavioral recency effect. Although the groups had different electrophysiological responses, the maintenance of letters in WM, the evaluation of the context of the probe, and the decision to accept or reject a probed letter were preserved in OFC patients. The results suggest that neural reorganization may contribute to intact recency judgment and response after OFC damage.

11.
Front Neuroinform ; 11: 14, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28303098

RESUMO

The localization of intracranial electrodes is a fundamental step in the analysis of invasive electroencephalography (EEG) recordings in research and clinical practice. The conclusions reached from the analysis of these recordings rely on the accuracy of electrode localization in relationship to brain anatomy. However, currently available techniques for localizing electrodes from magnetic resonance (MR) and/or computerized tomography (CT) images are time consuming and/or limited to particular electrode types or shapes. Here we present iElectrodes, an open-source toolbox that provides robust and accurate semi-automatic localization of both subdural grids and depth electrodes. Using pre- and post-implantation images, the method takes 2-3 min to localize the coordinates in each electrode array and automatically number the electrodes. The proposed pre-processing pipeline allows one to work in a normalized space and to automatically obtain anatomical labels of the localized electrodes without neuroimaging experts. We validated the method with data from 22 patients implanted with a total of 1,242 electrodes. We show that localization distances were within 0.56 mm of those achieved by experienced manual evaluators. iElectrodes provided additional advantages in terms of robustness (even with severe perioperative cerebral distortions), speed (less than half the operator time compared to expert manual localization), simplicity, utility across multiple electrode types (surface and depth electrodes) and all brain regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...