Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37504750

RESUMO

A set of commonly used food additives was evaluated for their antifungal activity against the brown rot disease of fruits caused by the fungal pathogen Monilinia fructigena, which is one of the most economically important agents, causing important damage to pome fruits, such as pears and apples. The radial mycelial growth of the fungal pathogen was assessed in PDA amended with different concentrations (0.5, 2, 2.5, and 5%) of each additive. The results underlined that most of the additives displayed a significant inhibition of mycelial growth, with the extent of inhibition varying depending on the specific additive and concentration used. Five food additives showed high inhibition rates (above 88%), of which sodium bicarbonate, sodium carbonate, copper sulphate, and sodium hydroxide were the most effective, whereas ammonium carbonate, magnesium chlorite, and citric acid were the least effective. Interestingly, the coatings containing sodium bicarbonate, copper sulphate, and ammonium bicarbonate significantly reduced the incidence of brown rot disease in apples, but other additives were not effective, such as ammonium carbonate and magnesium sulphate. The anhydrous sodium sulphate used at a concentration of 2%, was found to be one of the least effective additives, with a reduction rate of 20%. Subsequently, food additives showing good growth inhibition rates and reduction in disease severity were then tested in semi-commercial trials at temperatures of 4 °C and 22 °C. The results indicated that these additives demonstrate effectiveness in controlling M. fructigena at specific concentrations, and lower temperatures (4 °C) can improve the efficiency of the control measures. In addition, the selected food additives exhibited significant antimicrobial activity against M. fructigena, suggesting their application as a promising alternative for managing brown rot disease in apple fruits.

2.
J Fungi (Basel) ; 8(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35736119

RESUMO

Simultaneous treatment with antagonistic bacteria Bacillus amylolquefaciens (SF14), Alcaligenes faecalis (ACBC1), and the food additive sodium bicarbonate (SBC) to control post-harvest brown rot disease caused by Monilinia fructigena, and their effect on the post-harvest quality of nectarines were evaluated. Four concentrations of SBC (0.5, 2, 3.5, and 5%) were tested. Results showed that bacterial antagonists displayed remarkable compatibility with different concentrations of SBC and that their viability was not affected. The results obtained in vitro and in vivo bioassays showed a strong inhibitory effect of all treatments. The combination of each bacterial antagonist with SBC revealed a significant improvement in their biocontrol efficacies. The inhibition rates of mycelial growth ranged from 60.97 to 100%. These results also indicated that bacterial antagonists (SF14 or ACBC1) used at 1 × 108 CFU/ mL in combination with 2, 3.5, or 5% SBC significantly improved the control of M. fructigina by inhibiting the germination of spores. Interestingly, disease incidence and lesion diameter in fruits treated with SF14, ACBC1 alone, or in combination with SBC were significantly lower than those in the untreated fruits. In vivo results showed a significant reduction in disease severity ranging from 9.27 to 64.83% compared to the untreated control, while maintaining the appearance, firmness, total soluble solids (TSS), and titratable acidity (TA) of fruits. These results suggested that the improved disease control by the two antagonistic bacteria was more likely due to the additional inhibitory effects of SBC on the mycelial growth and spore germination of the pathogenic fungus. Overall, the combination of both bacteria with SBC provided better control of brown rot disease. Therefore, a mixture of different management strategies can effectively control brown rot decay on fruits.

3.
Sci Rep ; 10(1): 19204, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154485

RESUMO

The Mediterranean fruit fly, Ceratitis capitata Wiedemann, is a deleterious pest worldwide affecting fruit production. The entomopathogenic nematodes (EPNs) are a potential biocontrol agent that could be effectively used to control this Mediterranean fruit fly. In this study, five EPN strains reported from different fields in Morocco were evaluated for their efficacy against C. capitata. In laboratory assays, Steinernema feltiae-SF-MOR9, S. feltiae-SF-MOR10 and Heterorhabditis bacteriophora-HB-MOR7 strains showed significantly higher infectivity and penetration rates when compared to the other strains. S. feltiae-SF-MOR9 caused the highest larval mortality rate (80%) at 50 infective juveniles (IJs) cm-2. However, additional results showed that both S. feltiae strains were significantly effective in controlling C. capitata larvae in apricot (Prunus armeniaca) fruits on soil surface with high mortality rate at 50 and 100 IJs cm-2. Different soil textures and moisture levels resulted in a significant variation in EPN strain virulence against C. capitata. Sandy clay loam soil in combination with 50 IJs cm-2 of S. feltiae (SF-MOR9 or SF-MOR10) caused a higher mortality rate of C. capitata larvae. Furthermore, applying these EPN strains at 50-100 IJs cm-2 in combination with 10-15% moisture level showed optimal results against C. capitata larvae. Therefore, those two Moroccan EPN strains could be used as promising eco-friendly biological agents against C. capitata.


Assuntos
Ceratitis capitata/parasitologia , Controle Biológico de Vetores/métodos , Rabditídios , Estrongilídios , Animais , Marrocos
4.
Microb Pathog ; 139: 103914, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31811889

RESUMO

This study aimed at evaluating the antagonistic activity of 16 bacterial strains for the control of brown rot disease caused by Monilinia fructigena, and M. laxa under in vitro and a semi-commercial large-scale trial. These bacterial antagonists' belonging to the genera Alcaligenes, Bacillus, Brevibacterium, Pantoea, Pseudomonas, and Serratia were previously proven effective for control of fire blight of apple. The in vitro dual culture bioassay showed the highest inhibition rates of mycelial growth ranging from 55 to 95% and from 43 to 94% for M. fructigena and M. laxa, respectively. The in vivo bioassay showed moderate and strong inhibition for M. fructigena and M. laxa, respectively. The inhibition rates were dependent on incubation time as well as pathogen virulence. The free-cell bacterial filtrate revealed substantial mycelial growth inhibition ranging from 66 to 86%. The inhibition of conidial germination was from 32 to 78%, suggesting the involvement of metabolites in their biocontrol activity. The antifungal effect of the volatile compounds (VCOs) was observed for all bacteria with mycelial inhibition varying from 12 to 70%. Overall, their efficacy was substantially affected by the nature of the bacterial strains and the modes of action. Taken together, these results underscore that ACBC1 and SF14 for M. fructigena and SP10 and ACBP1 for M. laxa were the most effective bacterial strains. These strains were confirmed effective in a semi-commercial large-scale trial. Interestingly, their efficacies were found to be comparable to those of both commercial BCAs (B. subtilis Y1336 and P. agglomerans P10c), but slightly lower than thiophanate-methyl fungicide. The ability of most bacterial strains to produce lytic enzymes (Amylase, Protease or Cellulase) and lipopeptides (bacillomycin, fengycin, iturin and surfactin) was demonstrated by biochemical and molecular analyzes. Therefore, our findings suggest that the bacterial antagonists ACBC1, SF14, SP10 and ACBP1, have the potential to prevent brown rot disease.


Assuntos
Alcaligenes faecalis/química , Ascomicetos/fisiologia , Bacillus amyloliquefaciens/química , Fungicidas Industriais/farmacologia , Pantoea/química , Doenças das Plantas/microbiologia , Alcaligenes faecalis/metabolismo , Bacillus amyloliquefaciens/metabolismo , Frutas/microbiologia , Fungicidas Industriais/química , Fungicidas Industriais/metabolismo , Malus/microbiologia , Pantoea/metabolismo
5.
C R Biol ; 341(6): 343-348, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30032780

RESUMO

Rhizomania is one of serious threat to sugar beet production in Morocco and in several parts of the world. This disease led to a statistically significant decrease in the quality and yield of sugar beet plantations. Therefore, this study aimed at comparing the efficacy of six commonly used RNA extraction methods for the detection, recovery of RNA of beet necrotic yellow vein virus (BNYVV) and removal of amplification inhibitors by reverse transcription-polymerase chain reaction (RT-PCR). The efficiency of these extraction methods was then compared to that of a commercial isolation kit with high content of phenolic compounds. The results showed that the extraction with the lithium chloride technique, the commercial kit, and direct and membrane spotting crude extract methods were found effective in yielding a higher purity and a higher concentration of RNA when compared to the other tested methods. Extraction with the lithium chloride technique and the Qiagen kit (RNeasy Plant Mini Kit) allowed the most intense band, whereas the CTAB method has generated the least intense band. Furthermore, the silica capture extraction method did not yield any RNA after extraction and electrophoresis. Consequently, it was concluded that, of these six methods, the lithium chloride technique and the Qiagen kit are the most appropriate for the extraction of viral RNA from sugar beet samples prior to RT-PCR for detecting BNYVV.


Assuntos
Beta vulgaris/virologia , Doenças das Plantas/virologia , Vírus de Plantas/isolamento & purificação , Vírus de RNA/isolamento & purificação , Marrocos , Raízes de Plantas , RNA/isolamento & purificação
6.
J Gen Virol ; 97(12): 3433-3445, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27902403

RESUMO

Recombination events are frequently inferred from the increasing number of sequenced viral genomes, but their impact on natural viral populations has rarely been evidenced. TYLCV-IS76 is a recombinant (Begomovirus,Geminiviridae) between the Israel strain of tomato yellow leaf curl virus (TYLCV-IL) and the Spanish strain of tomato yellow leaf curl Sardinia virus (TYLCSV-ES) that was generated most probably in the late 1990s in southern Morocco (Souss). Its emergence in the 2000s coincided with the increasing use of resistant tomato cultivars bearing the Ty-1 gene, and led eventually to the entire displacement of both parental viruses in the Souss. Here, we provide compelling evidence that this viral population shift was associated with selection of TYLCV-IS76 viruses in tomato plants and particularly in Ty-1-bearing cultivars. Real-time quantitative PCR (qPCR) monitoring revealed that TYLCV-IS76 DNA accumulation in Ty-1-bearing plants was significantly higher than that of representatives of the parental virus species in single infection or competition assays. This advantage of the recombinant in Ty-1-bearing plants was not associated with a fitness cost in a susceptible, nearly isogenic, cultivar. In competition assays in the resistant cultivar, the DNA accumulation of the TYLCV-IL clone - the parent less affected by the Ty-1 gene in single infection - dropped below the qPCR detection level at 120 days post-infection (p.i.) and below the whitefly vector (Bemisia tabaci) transmissibility level at 60 days p.i. The molecular basis of the selective advantage of TYLCV-IS76 is discussed in relation to its non-canonical recombination pattern, and the RNA-dependent RNA polymerase encoded by the Ty-1 gene.


Assuntos
Begomovirus/genética , Doenças das Plantas/virologia , Recombinação Genética , Solanum lycopersicum/virologia , Animais , Begomovirus/fisiologia , Hemípteros/fisiologia , Hemípteros/virologia , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Marrocos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...