Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781317

RESUMO

Plants must cope with a variety of stressors during their life cycle, and the adaptive responses to these environmental cues involve all cellular organelles. Among them, comparatively little is known about the contribution of cytosolic lipid droplets (LDs) and their core set of neutral lipids and associated surface proteins to the rewiring of cellular processes in response to stress. Here, we analyzed the changes that occur in the lipidome and proteome of Arabidopsis (Arabidopsis thaliana) leaves after pathogen infection with Botrytis cinerea or Pseudomonas syringae, or after heat stress. Analyses were carried out in wild-type plants and the oil-rich double mutant trigalactosyldiacylglycerol1-1 sugar dependent 1-4 (tgd1-1 sdp1-4) that allowed for an allied study of the LD proteome in stressed leaves. Using liquid chromatography-tandem mass spectrometry-based methods, we showed that a hyperaccumulation of the primary LD core lipid triacylglycerol is a general response to stress and that acyl chain and sterol composition are remodeled during cellular adaptation. Likewise, comparative analysis of the LD protein composition in stress-treated leaves highlighted the plasticity of the LD proteome as part of the general stress response. We further identified at least two additional LD-associated proteins, whose localization to LDs in leaves was confirmed by confocal microscopy of fluorescent protein fusions. Taken together, these results highlight LDs as dynamic contributors to the cellular adaptation processes that underlie how plants respond to environmental stress.

2.
New Phytol ; 233(5): 2185-2202, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34931304

RESUMO

Pollen tubes require a tightly regulated pectin secretion machinery to sustain the cell wall plasticity required for polar tip growth. Involved in this regulation at the apical plasma membrane are proteins and signaling molecules, including phosphoinositides and phosphatidic acid (PA). However, the contribution of diacylglycerol kinases (DGKs) is not clear. We transiently expressed tobacco DGKs in pollen tubes to identify a plasma membrane (PM)-localized isoform, and then to study its effect on pollen tube growth, pectin secretion and lipid signaling. In order to potentially downregulate DGK5 function, we overexpressed an inactive variant. Only one of eight DGKs displayed a confined localization at the apical PM. We could demonstrate its enzymatic activity and that a kinase-dead variant was inactive. Overexpression of either variant led to differential perturbations including misregulation of pectin secretion. One mode of regulation could be that DGK5-formed PA regulates phosphatidylinositol 4-phosphate 5-kinases, as overexpression of the inactive DGK5 variant not only led to a reduction of PA but also of phosphatidylinositol 4,5-bisphosphate levels and suppressed related growth phenotypes. We conclude that DGK5 is an additional player of polar tip growth that regulates pectin secretion probably in a common pathway with PI4P 5-kinases.


Assuntos
Nicotiana , Tubo Polínico , Membrana Celular/metabolismo , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Fosfatidilinositóis/metabolismo , Nicotiana/metabolismo
3.
RNA Biol ; 18(12): 2466-2479, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34006170

RESUMO

TrmB belongs to the class I S-adenosylmethionine (SAM)-dependent methyltransferases (MTases) and introduces a methyl group to guanine at position 7 (m7G) in tRNA. In tRNAs m7G is most frequently found at position 46 in the variable loop and forms a tertiary base pair with C13 and U22, introducing a positive charge at G46. The TrmB/Trm8 enzyme family is structurally diverse, as TrmB proteins exist in a monomeric, homodimeric, and heterodimeric form. So far, the exact enzymatic mechanism, as well as the tRNA-TrmB crystal structure is not known. Here we present the first crystal structures of B. subtilis TrmB in complex with SAM and SAH. The crystal structures of TrmB apo and in complex with SAM and SAH have been determined by X-ray crystallography to 1.9 Å (apo), 2.5 Å (SAM), and 3.1 Å (SAH). The obtained crystal structures revealed Tyr193 to be important during SAM binding and MTase activity. Applying fluorescence polarization, the dissociation constant Kd of TrmB and tRNAPhe was determined to be 0.12 µM ± 0.002 µM. Luminescence-based methyltransferase activity assays revealed cooperative effects during TrmB catalysis with half-of-the-site reactivity at physiological SAM concentrations. Structural data retrieved from small-angle x-ray scattering (SAXS), mass-spectrometry of cross-linked complexes, and molecular docking experiments led to the determination of the TrmB-tRNAPhe complex structure.


Assuntos
Bacillus subtilis/metabolismo , Mutação , RNA de Transferência/química , RNA de Transferência/metabolismo , S-Adenosilmetionina/metabolismo , tRNA Metiltransferases/química , tRNA Metiltransferases/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , RNA de Transferência/genética , tRNA Metiltransferases/genética
4.
Plant Cell ; 30(9): 2137-2160, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30087207

RESUMO

The number of known proteins associated with plant lipid droplets (LDs) is small compared with other organelles. Many aspects of LD biosynthesis and degradation are unknown, and identifying and characterizing candidate LD proteins could help elucidate these processes. Here, we analyzed the proteome of LD-enriched fractions isolated from tobacco (Nicotiana tabacum) pollen tubes. Proteins that were highly enriched in comparison with the total or cytosolic fraction were further tested for LD localization via transient expression in pollen tubes. One of these proteins, PLANT UBX DOMAIN-CONTAINING PROTEIN10 (PUX10), is a member of the plant UBX domain-containing (PUX) protein family. This protein localizes to LDs via a unique hydrophobic polypeptide sequence and can recruit the AAA-type ATPase CELL DIVISION CYCLE48 (CDC48) protein via its UBX domain. PUX10 is conserved in Arabidopsis thaliana and expressed in embryos, pollen tubes, and seedlings. In pux10 knockout mutants in Arabidopsis, LD size is significantly increased. Proteomic analysis of pux10 mutants revealed a delayed degradation of known LD proteins, some of which possessed ubiquitination sites. We propose that PUX10 is involved in a protein degradation pathway at LDs, mediating an interaction between polyubiquitinated proteins targeted for degradation and downstream effectors such as CDC48.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Associadas a Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proteínas Associadas a Gotículas Lipídicas/genética , Poliubiquitina/metabolismo , Proteômica/métodos
5.
Plant J ; 89(5): 1055-1064, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27943529

RESUMO

In recent years, lipid droplets have emerged as dynamic organelles rather than inactive storage sites for triacylglycerol. The number of proteins known to be associated with lipid droplets has increased, but remains small in comparison with those found with other organelles. Also the mechanisms of how lipid droplets are recognized and bound by proteins need deeper investigation. Here, we present a fast, simple and inexpensive approach to assay proteins for their association with lipid droplets in vivo that can help to screen protein candidates or mutated variants of proteins for their association in an efficient manner. For this, a system to transiently transform Nicotiana tabacum pollen grains was used because these naturally contain lipid droplets. We designed vectors for fast cloning of genes as fusions with either mVenus or mCherry. This allowed us to assay colocalization with lipid droplets stained with Nile Red and Bodipy 505/515, respectively. We successfully tested our system not only for proteins from Arabidopsis thaliana, but also for proteins from the moss Physcomitrella patens and the alga Chlamydomonas reinhardtii. The small size of the vector used allows easy exchange of codons by site-directed mutagenesis. We used this to show that two proline residues in the proline knot of a caleosin are not essential for the binding of lipid droplets. We also demonstrated that peroxisomes are not associated with the lipid droplets in tobacco pollen tubes, which reduces the risk of false interpretation of microscopic data in our system.


Assuntos
Gotículas Lipídicas/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Tubo Polínico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Proteínas de Plantas/genética , Tubo Polínico/genética , Nicotiana/genética , Transformação Genética/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...