Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Phys Rev E ; 109(4-1): 044204, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38755803

RESUMO

In this paper we study different types of phase space structures which appear in the context of relativistic chaotic scattering. By using the relativistic version of the Hénon-Heiles Hamiltonian, we numerically study the topology of different kind of exit basins and compare it with the case of low velocities in which the Newtonian version of the system is valid. Specifically, we numerically study the escapes in the phase space, in the energy plane, and in the ß plane, which richly characterize the dynamics of the system. In all cases, fractal structures are present, and the escaping dynamics is characterized. In every case a scaling law is numerically obtained in which the percentage of the trapped trajectories as a function of the relativistic parameter ß and the energy is obtained. Our work could be useful in the context of charged particles which eventually can be trapped in the magnetosphere, where the analysis of these structures can be relevant.

2.
Chaos ; 24(2): 024407, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24985461

RESUMO

Transient chaos and unbounded dynamics are two outstanding phenomena that dominate in chaotic systems with large regions of positive and negative divergences. Here, we investigate the mechanism that leads the unbounded dynamics to be the dominant behavior in a dissipative flow. We describe in detail the particular case of boundary crisis related to the generation of unbounded dynamics. The mechanism of the creation of this crisis in flows is related to the existence of an unstable focus-node (or a saddle-focus) equilibrium point and the crossing of a chaotic invariant set of the system with the weak-(un)stable manifold of the equilibrium point. This behavior is illustrated in the well-known Rössler model. The numerical analysis of the system combines different techniques as chaos indicators, the numerical computation of the bounded regions, and bifurcation analysis. For large values of the parameters, the system is studied by means of Fenichel's theory, providing formulas for computing the slow manifold which influences the evolution of the first stages of the orbit.

3.
Artigo em Inglês | MEDLINE | ID: mdl-24827315

RESUMO

The effects of a periodic forcing on chaotic scattering are relevant in certain situations of physical interest. We investigate the effects of the forcing amplitude and the external frequency in both the survival probability of the particles in the scattering region and the exit basins associated to phase space. We have found an exponential decay law for the survival probability of the particles in the scattering region. A resonant-like behavior is uncovered where the critical values of the frequencies ω≃1 and ω≃2 permit the particles to escape faster than for other different values. On the other hand, the computation of the exit basins in phase space reveals the existence of Wada basins depending of the frequency values. We provide some heuristic arguments that are in good agreement with the numerical results. Our results are expected to be relevant for physical phenomena such as the effect of companion galaxies, among others.

4.
Phys Rev Lett ; 108(21): 214102, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-23003260

RESUMO

We reveal the existence of a new codimension-1 curve that involves a topological change in the structure of the chaotic invariant sets (attractors and saddles) in generic three-dimensional dissipative systems with Shilnikov saddle foci. This curve is related to the spiral-like structures of periodicity hubs that appear in the biparameter phase plane. We show how this curve configures the spiral structure (via the doubly superstable points) originated by the existence of Shilnikov homoclinics and how it separates two regions with different kinds of chaotic attractors or chaotic saddles. Inside each region, the topological structure is the same for both chaotic attractors and saddles.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(3 Pt 2): 035201, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22060441

RESUMO

We reveal and give a theoretical explanation for spiral-like structures of periodicity hubs in the biparameter space of a generic dissipative system. We show that organizing centers for "shrimp"-shaped connection regions in the spiral structure are due to the existence of Shilnikov homoclinics near a codimension-2 bifurcation of saddle-foci.


Assuntos
Dinâmica não Linear , Periodicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...