Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 578(7795): 381-385, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32076220

RESUMO

Topological physics relies on the structure of the eigenstates of the Hamiltonians. The geometry of the eigenstates is encoded in the quantum geometric tensor1-comprising the Berry curvature2 (crucial for topological matter)3 and the quantum metric4, which defines the distance between the eigenstates. Knowledge of the quantum metric is essential for understanding many phenomena, such as superfluidity in flat bands5, orbital magnetic susceptibility6,7, the exciton Lamb shift8 and the non-adiabatic anomalous Hall effect6,9. However, the quantum geometry of energy bands has not been measured. Here we report the direct measurement of both the Berry curvature and the quantum metric in a two-dimensional continuous medium-a high-finesse planar microcavity10-together with the related anomalous Hall drift. The microcavity hosts strongly coupled exciton-photon modes (exciton polaritons) that are subject to photonic spin-orbit coupling11 from which Dirac cones emerge12, and to exciton Zeeman splitting, breaking time-reversal symmetry. The monopolar and half-skyrmion pseudospin textures are measured using polarization-resolved photoluminescence. The associated quantum geometry of the bands is extracted, enabling prediction of the anomalous Hall drift, which we measure independently using high-resolution spatially resolved epifluorescence. Our results unveil the intrinsic chirality of photonic modes, the cornerstone of topological photonics13-15. These results also experimentally validate the semiclassical description of wavepacket motion in geometrically non-trivial bands9,16. The use of exciton polaritons (interacting photons) opens up possibilities for future studies of quantum fluid physics in topological systems.

2.
Phys Rev Lett ; 123(21): 215301, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31809176

RESUMO

We investigate the formation of a new class of density-phase defects in a resonantly driven 2D quantum fluid of light. The system bistability allows the formation of low-density regions containing density-phase singularities confined between high-density regions. We show that, in 1D channels, an odd (1 or 3) or even (2 or 4) number of dark solitons form parallel to the channel axis in order to accommodate the phase constraint induced by the pumps in the barriers. These soliton molecules are typically unstable and evolve toward stationary symmetric or antisymmetric arrays of vortex streets straightforwardly observable in cw experiments. The flexibility of this photonic platform allows implementing more complicated potentials such as mazelike channels, with the vortex streets connecting the entrances and thus solving the maze.

3.
Phys Rev Lett ; 122(23): 233905, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31298888

RESUMO

Topological defects, such as quantum vortices, determine the properties of quantum fluids. Their study has been at the center of activity in solid state and BEC communities. In parallel, the nontrivial behavior of linear wave packets with complex phase patterns was investigated by singular optics. Here, we study the formation, evolution, and interaction of optical vortices in wave packets at the Dirac point in photonic graphene. We show that while their exact behavior goes beyond the Dirac equation and requires a full account of the lattice properties, it can be still approximately described by an effective theory considering the phase singularities as "particles". These particles are capable of mutual interaction, with their trajectory obeying the laws of dynamics.

4.
Nat Commun ; 9(1): 3991, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30266940

RESUMO

Topologically protected pseudospin transport, analogous to the quantum spin Hall effect, cannot be strictly implemented for photons and in general bosons because of the lack of symmetry-protected pseudospins. Here we show that the required protection can be provided by the real-space topological excitation of an interacting quantum fluid: a quantum vortex. We consider a Bose-Einstein condensate at the Γ point of the Brillouin zone of a quantum valley Hall system based on two staggered honeycomb lattices. We demonstrate the existence of a coupling between the vortex winding and the valley of the bulk Bloch band. This leads to chiral vortex propagation on each side of the zigzag interface between two regions of inverted staggering. The topological protection provided by the vortex winding prevents valley pseudospin mixing and resonant backscattering, allowing a truly topologically protected valley pseudospin transport.

5.
Phys Rev Lett ; 121(2): 020401, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30085704

RESUMO

We study the role of the quantum geometric tensor (QGT) in the evolution of two-band quantum systems. We show that all its components play an important role on the extra phase acquired by a spinor and on the trajectory of an accelerated wave packet in any realistic finite-duration experiment. While the adiabatic phase is determined by the Berry curvature (the imaginary part of the tensor), the nonadiabaticity is determined by the quantum metric (the real part of the tensor). We derive, for geodesic trajectories (corresponding to acceleration from zero initial velocity), the semiclassical equations of motion with nonadiabatic corrections. The particular case of a planar microcavity in the strong coupling regime allows us to extract the QGT components by direct light polarization measurements and to check their effects on the quantum evolution.

6.
Phys Rev Lett ; 118(2): 023901, 2017 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-28128594

RESUMO

We study gap solitons which appear in the topological gap of 1D bosonic dimer chains within the mean-field approximation. We find that such solitons have a nontrivial texture of the sublattice pseudospin. We reveal their chiral nature by demonstrating the anisotropy of their behavior in the presence of a localized energy potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...