Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 52(7): 1153-61, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21616930

RESUMO

Glutathione-dependent detoxification is a key pathway that allows plants to efficiently remove toxic compounds like heavy metals or electrophilic xenobiotics. Under persistent exposure to toxins plants need to respond to continuous demand with efficient synthesis of glutathione (GSH) and ideally fast and efficient removal of potentially toxic glutathione S-conjugates. With the aim of studying the respective degradation pathway in Physcomitrella patens we initially characterized fluorescence labeling of protonema cultures with GSH-specific xenobiotic monochlorobimane (MCB). Incubation of protonema with 200 µM MCB for 24 h resulted in a steady increase of total bimane label, which was not confined to glutathione S-bimane (GS-B), but predominantly present in γ-glutamylcysteine S-bimane (γ-EC-B) and cysteine S-bimane (Cys-B). Pulse-chase experiments identified γ-EC-B and Cys-B as degradation products of GS-B, suggesting initial cleavage of the C-terminal glycine, followed by cleavage of the γ-glutamyl bond. The amount of GS-B formed, increased linearly at 90 nmol GSH g fw⁻¹ h⁻¹ for 24 h and after ∼1.5 h already surpassed the amount of GSH present in control protonema. This demand-driven biosynthesis of GSH depends on sufficient supply of sulfate in the incubation medium.


Assuntos
Bryopsida/metabolismo , Glutationa/análogos & derivados , Glicina/metabolismo , Compostos Bicíclicos com Pontes , Meios de Cultura/química , Técnicas de Cultura , Cisteína/análogos & derivados , Cisteína/biossíntese , Glutationa/biossíntese , Pirazóis , Sulfatos/metabolismo
2.
Biomed Chromatogr ; 24(10): 1125-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20853467

RESUMO

The development of methods for the separation of the enantiomers of fenoterol by chiral HPLC and capillary zone electrophoresis (CZE) is described. For the HPLC separation precolumn fluorescence derivatization with naphthyl isocyanate was applied. The resulting urea derivatives were resolved on a cellulose tris(3,5-dimethylphenylcarbamate)-coated silica gel column employing a column switching procedure. Detection was carried out fluorimetrically with a detection limit in the low ng/mL range. The method was adapted to the determination of fenoterol enantiomers in rat heart perfusates using liquid-liquid extraction. As an alternative a CE method was used for the direct separation of fenoterol enantiomers comparing different cyclodextrin derivatives as chiral selectors.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Eletroforese Capilar/métodos , Fenoterol/química , Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/isolamento & purificação , Animais , Fenoterol/isolamento & purificação , Miocárdio/química , Ratos , Estereoisomerismo , Simpatomiméticos/química , Simpatomiméticos/isolamento & purificação
3.
J Bacteriol ; 190(15): 5431-8, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18539744

RESUMO

Glutathione (GSH) and its derivative phytochelatin are important binding factors in transition-metal homeostasis in many eukaryotes. Here, we demonstrate that GSH is also involved in chromate, Zn(II), Cd(II), and Cu(II) homeostasis and resistance in Escherichia coli. While the loss of the ability to synthesize GSH influenced metal tolerance in wild-type cells only slightly, GSH was important for residual metal resistance in cells without metal efflux systems. In mutant cells without the P-type ATPase ZntA, the additional deletion of the GSH biosynthesis system led to a strong decrease in resistance to Cd(II) and Zn(II). Likewise, in mutant cells without the P-type ATPase CopA, the removal of GSH led to a strong decrease of Cu(II) resistance. The precursor of GSH, gamma-glutamylcysteine (gammaEC), was not able to compensate for a lack of GSH. On the contrary, gammaEC-containing cells were less copper and cadmium tolerant than cells that contained neither gammaEC nor GSH. Thus, GSH may play an important role in trace-element metabolism not only in higher organisms but also in bacteria.


Assuntos
Cádmio/metabolismo , Cobre/metabolismo , Escherichia coli/fisiologia , Glutationa/metabolismo , Homeostase , Zinco/metabolismo , Adenosina Trifosfatases/genética , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Dipeptídeos/metabolismo , Farmacorresistência Bacteriana , Escherichia coli/química , Escherichia coli/crescimento & desenvolvimento , Deleção de Genes , Metais Pesados/metabolismo , Metais Pesados/farmacologia , Mutagênese Insercional , Compostos de Sulfidrila/análise
4.
J Bacteriol ; 187(19): 6701-7, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16166532

RESUMO

Escherichia coli excretes the catecholate siderophore enterobactin in response to iron deprivation. While the mechanisms underlying enterobactin biosynthesis and ferric enterobactin uptake and utilization are widely understood, nearly nothing is known about how enterobactin is exported from the cell. Mutant and high-performance liquid chromatography analyses demonstrated that the outer membrane channel tunnel protein TolC but none of the respective seven resistance nodulation cell division (RND) proteins CusA, AcrB, AcrD, AcrF, MdtF (YhiV), or the twin RND MdtBC (YegNO) was essential for enterobactin export across the outer membrane. Mutant E. coli strains with additional deletion of tolC or the major facilitator entS were growth deficient in iron-depleted medium. Strains with deletion of tolC or entS, but not with deletion of genes encoding RND transporters, excreted very little enterobactin into the growth medium. Enterobactin excretion in E. coli is thus probably a two-step process involving the major facilitator EntS and the outer membrane channel tunnel protein TolC. Quantitative reverse transcription-PCR analysis of gene-specific transcripts showed no significant changes in tolC expression upon iron depletion. However, iron starvation led to increased expression of the RND gene mdtF and a decrease in acrD.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Enterobactina/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Cromatografia Líquida de Alta Pressão , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Deleção de Genes , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...