Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 24(5): 1198-1203, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29125653

RESUMO

The synthesis of the new nitroxide crown ether 8 and its use as the wheel in a bistable [2]rotaxane, containing dialkylammonium and 4,4'-bipyridinium recognition sites, is reported. The synthesis of 8 was achieved by the sequential addition of substituted phenyl groups to a nitrone derivatives leading to the preferential formation of the cis stereoisomer. Due to charge-dipole interactions between the nitroxide unit and the bipyridinium moiety, it was possible to probe the movement of the macrocycle between the two molecular stations of the [2]rotaxane after addition of a base by measuring the nitrogen hyperfine splitting in the corresponding EPR spectra. The equilibrium constant for the complexation of dibenzyl viologen by the macrocycle 8 was also determined by EPR titration.

2.
Chemistry ; 22(26): 8745-50, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27123774

RESUMO

Gaining detailed information on the structural rearrangements associated with stimuli-induced molecular movements is of utmost importance for understanding the operation of molecular machines. Pulsed electron-electron double resonance (PELDOR) was employed to monitor the geometrical changes arising upon chemical switching of a [2]rotaxane that behaves as an acid-base-controlled molecular shuttle. To this aim, the rotaxane was endowed with stable nitroxide radical units in both the ring and axle components. The combination of PELDOR data and molecular dynamic calculations indicates that in the investigated rotaxane, the ring displacement along the axle, caused by the addition of a base, does not alter significantly the distance between the nitroxide labels, but it is accompanied by a profound change in the geometry adopted by the macrocycle.

3.
ChemistryOpen ; 4(1): 18-21, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25861565

RESUMO

An acid-base switchable molecular shuttle based on a [2]rotaxane, incorporating stable radical units in both the ring and dumbbell components, is reported. The [2]rotaxane comprises a dibenzo[24]crown-8 ring (DB24C8) interlocked with a dumbbell component that possesses a dialkylammonium (NH2 (+)) and a 4,4'-bipyridinium (BPY(2+)) recognition site. Deprotonation of the rotaxane NH2 (+) centers effects a quantitative displacement of the DB24C8 macroring to the BPY(2+) recognition site, a process that can be reversed by acid treatment. Interaction between stable 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radicals connected to the ring and dumbbell components could be switched between noncoupled (three-line electron paramagnetic resonance (EPR) spectrum) and coupled (five-line EPR spectrum) upon displacement of the spin-labelled DB24C8 macroring. The complete base- and acid-induced switching cycle of the EPR pattern was repeated six times without an appreciable loss of signal, highlighting the reversibility of the process. Hence, this molecular machine is capable of switching on/off magnetic interactions by chemically driven reversible mechanical effects. A system of this kind represents an initial step towards a new generation of nanoscale magnetic switches that may be of interest for a variety of applications.

4.
ChemistryOpen ; 4(1): 2, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25870780

RESUMO

Invited for this months cover are the groups of Professors Marco Lucarini and Alberto Credi at the University of Bologna. The cover picture shows coupled and uncoupled states of a [2]rotaxane incorporating stable nitroxide radical units in both the ring and dumbbell components. Interaction between nitroxide radicals could be switched between noncoupled (three-line electron paramagnetic resonance (EPR) spectrum) and coupled (five-line EPR spectrum) upon deprotonation of the rotaxane NH2 (+) centers that effects a quantitative displacement of a dibenzocrown macroring to a 4,4'-bipyridinium recognition site. The complete base- and acid-induced switching cycle of the EPR pattern was repeated several times without an appreciable loss of signal, highlighting the reversibility of the process. Hence, this molecular machine is capable of switching on/off magnetic interactions by chemically driven reversible mechanical effects. For more details, see the Communication on p. 18 ff.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...