Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 140(6): 1680-1691, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28459961

RESUMO

There exist significant clinical and basic research needs for accurate, automated seizure detection algorithms. These algorithms have translational potential in responsive neurostimulation devices and in automatic parsing of continuous intracranial electroencephalography data. An important barrier to developing accurate, validated algorithms for seizure detection is limited access to high-quality, expertly annotated seizure data from prolonged recordings. To overcome this, we hosted a kaggle.com competition to crowdsource the development of seizure detection algorithms using intracranial electroencephalography from canines and humans with epilepsy. The top three performing algorithms from the contest were then validated on out-of-sample patient data including standard clinical data and continuous ambulatory human data obtained over several years using the implantable NeuroVista seizure advisory system. Two hundred teams of data scientists from all over the world participated in the kaggle.com competition. The top performing teams submitted highly accurate algorithms with consistent performance in the out-of-sample validation study. The performance of these seizure detection algorithms, achieved using freely available code and data, sets a new reproducible benchmark for personalized seizure detection. We have also shared a 'plug and play' pipeline to allow other researchers to easily use these algorithms on their own datasets. The success of this competition demonstrates how sharing code and high quality data results in the creation of powerful translational tools with significant potential to impact patient care.


Assuntos
Algoritmos , Crowdsourcing/métodos , Eletrocorticografia/métodos , Desenho de Equipamento/métodos , Convulsões/diagnóstico , Adulto , Animais , Crowdsourcing/normas , Modelos Animais de Doenças , Eletrocorticografia/normas , Desenho de Equipamento/normas , Humanos , Próteses e Implantes , Reprodutibilidade dos Testes
2.
J Neural Eng ; 13(3): 036011, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27098152

RESUMO

OBJECTIVE: Recently the FDA approved the first responsive, closed-loop intracranial device to treat epilepsy. Because these devices must respond within seconds of seizure onset and not miss events, they are tuned to have high sensitivity, leading to frequent false positive stimulations and decreased battery life. In this work, we propose a more robust seizure detection model. APPROACH: We use a Bayesian nonparametric Markov switching process to parse intracranial EEG (iEEG) data into distinct dynamic event states. Each event state is then modeled as a multidimensional Gaussian distribution to allow for predictive state assignment. By detecting event states highly specific for seizure onset zones, the method can identify precise regions of iEEG data associated with the transition to seizure activity, reducing false positive detections associated with interictal bursts. The seizure detection algorithm was translated to a real-time application and validated in a small pilot study using 391 days of continuous iEEG data from two dogs with naturally occurring, multifocal epilepsy. A feature-based seizure detector modeled after the NeuroPace RNS System was developed as a control. MAIN RESULTS: Our novel seizure detection method demonstrated an improvement in false negative rate (0/55 seizures missed versus 2/55 seizures missed) as well as a significantly reduced false positive rate (0.0012 h versus 0.058 h(-1)). All seizures were detected an average of 12.1 ± 6.9 s before the onset of unequivocal epileptic activity (unequivocal epileptic onset (UEO)). SIGNIFICANCE: This algorithm represents a computationally inexpensive, individualized, real-time detection method suitable for implantable antiepileptic devices that may considerably reduce false positive rate relative to current industry standards.


Assuntos
Algoritmos , Convulsões/diagnóstico , Animais , Teorema de Bayes , Sistemas Computacionais , Cães , Estimulação Elétrica , Eletrocorticografia , Reações Falso-Negativas , Reações Falso-Positivas , Cadeias de Markov , Distribuição Normal , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...