Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Radiol Prot ; 41(1)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33406511

RESUMO

Working Group (WG) 6 'Computational Dosimetry' of the European Radiation Dosimetry Group promotes good practice in the application of computational methods for radiation dosimetry in radiation protection and the medical use of ionising radiation. Its cross-sectional activities within the association cover a large range of current topics in radiation dosimetry, including more fundamental studies of radiation effects in complex systems. In addition, WG 6 also performs scientific research and development as well as knowledge transfer activities, such as training courses. Monte Carlo techniques, including the use of anthropomorphic and other numerical phantoms based on voxelised geometrical models, play a strong part in the activities pursued in WG 6. However, other aspects and techniques, such as neutron spectra unfolding, have an important role as well. A number of intercomparison exercises have been carried out in the past to provide information on the accuracy with which computational methods are applied and whether best practice is being followed. Within the exercises that are still ongoing, the focus has changed towards assessing the uncertainty that can be achieved with these computational methods. Furthermore, the future strategy of WG 6 also includes an extension of the scope toward experimental benchmark activities and evaluation of cross-sections and algorithms, with the vision of establishing a gold standard for Monte Carlo methods used in medical and radiobiological applications.


Assuntos
Proteção Radiológica , Radiometria , Estudos Transversais , Método de Monte Carlo , Nêutrons , Doses de Radiação
2.
Rev Sci Instrum ; 81(2): 02B301, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20192424

RESUMO

In the framework of the International Fusion Materials Irradiation Facility-Engineering Validation and Engineering Design Activities (IFMIF-EVEDA) project, CEA/IRFU is in charge of the design and realization of the 140 mA cw deuteron Injector. The electron cyclotron resonance ion source operates at 2.45 GHz and a 4 electrode extraction system has been chosen. A 2 solenoid beam line, together with a high space charge compensation have been optimized for a proper beam injection in the 175 MHz radio frequency quadrupole. The injector will be tested with proton and deuteron beam production either in pulsed mode or in cw mode on the CEA-Saclay site before to be shipped to Japan. Special attention was paid to neutron emission due to (d,D) reaction. In this paper, the general IFMIF Injector design is reported, pointing out beam dynamics, radioprotection, diagnostics, and mechanical aspects.

3.
Radiat Prot Dosimetry ; 126(1-4): 123-5, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17510204

RESUMO

Double-differential cross-sections for light-ion production (up to A = 4) induced by 96 MeV neutrons have been measured for Fe, Pb and U. The experiments have been performed at The Svedberg Laboratory in Uppsala, using two independent devices, MEDLEY and SCANDAL. The recorded data cover a wide angular range (20 degrees -160 degrees ) with low energy thresholds. The data have been normalised to obtain cross-sections using np elastic scattering events. The latter have been recorded with the same setup, and results for this measurement are reported. The work was performed within the HINDAS collaboration with the primary aim of improving the database for three of the most important nuclei for incineration of nuclear waste with accelerator-driven systems. The obtained cross-section data are of particular interest for the understanding of the so-called pre-equilibrium stage in a nuclear reaction and will be compared with model calculations.


Assuntos
Ferro/efeitos da radiação , Chumbo/efeitos da radiação , Nêutrons , Radiometria/instrumentação , Radiometria/métodos , Urânio/efeitos da radiação , Íons , Doses de Radiação , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...