Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38998434

RESUMO

A finite element analysis (FEA) was conducted to examine the behaviour of single-lap quasi-isotropic (QI) and cross-ply (CP) hybrid bolted/bonded (HBB) configurations subjected to tensile shear loading. Several critical design factors influencing the composite joint strength, failure conditions, and load-sharing mechanisms that would optimise the joining performance were assessed. The study of the stress concentration around the holes and along the adhesive layer highlights the fact that the HBB joints benefit from significantly lower stresses compared to only bolted joints, especially for CP configurations. The simulation results confirmed the redundancy of the middle bolt in a three-bolt HBB joint. The stiffness and plastic behaviour of the adhesive were found to be important factors that define the transition of the behaviour of the joint from a bolted type, where load sharing is predominant, to a bonded joint. The load-sharing potential, known as an indicator of the joint's performance, is improved by reducing the overlap length, using a low-stiffness, high-plasticity adhesive, and using thicker laminates in the QI layup configuration. Enhancing both the ratio of the edge distance to the hole diameter and washer size proves advantageous in reducing stresses within the adhesive layer, thereby improving the joint strength.

2.
Materials (Basel) ; 17(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612188

RESUMO

This study examines the behavior of hybrid bolted/bonded (HBB) joints loaded in tensile shear comprising plain weave carbon/epoxy laminates in quasi-isotropic (QI) and cross-ply (CP) layups. It proposes a combined approach of 3D digital image correlation and finite element analysis (FEA) to assess their behavior. To apply the FEA simulation accurately, a single layer of plain fabric was replaced with [0/90]s lamination. Experimental standard open-hole tension test results, as well as only bolted (OB) and HBB, along with FEA predictions, confirmed the accuracy of the substitution method. The FEA, calibrated by experimental results, provides insight into the distinctive characteristics of HBB joints in comparison with bonded and bolted joints. Critical considerations include material properties, damage modeling, adhesive characteristics, and mass scaling. The FEA results underscored the pivotal role of adhesives in HBB joints, rendering them akin solely to bonded configurations. HBB joints retain their geometry better than OB joints with considerably less out-of-plane displacement, following a sinusoidal trend. Moreover, the overall behavior of the two layups demonstrates that CP benefits from having higher strength than QI, especially at the critical hole located closer to the grip side.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA