Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Viruses ; 16(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38932265

RESUMO

Pathogenic adenovirus (Ad) infections are widespread but typically mild and transient, except in the immunocompromised. As vectors for gene therapy, vaccine, and oncology applications, Ad-based platforms offer advantages, including ease of genetic manipulation, scale of production, and well-established safety profiles, making them attractive tools for therapeutic development. However, the immune system often poses a significant challenge that must be overcome for adenovirus-based therapies to be truly efficacious. Both pre-existing anti-Ad immunity in the population as well as the rapid development of an immune response against engineered adenoviral vectors can have detrimental effects on the downstream impact of an adenovirus-based therapeutic. This review focuses on the different challenges posed, including pre-existing natural immunity and anti-vector immunity induced by a therapeutic, in the context of innate and adaptive immune responses. We summarise different approaches developed with the aim of tackling these problems, as well as their outcomes and potential future applications.


Assuntos
Imunidade Adaptativa , Adenoviridae , Terapia Genética , Vetores Genéticos , Imunidade Inata , Humanos , Adenoviridae/imunologia , Adenoviridae/genética , Vetores Genéticos/imunologia , Vetores Genéticos/genética , Terapia Genética/métodos , Animais , Sistema Imunitário/imunologia , Infecções por Adenoviridae/imunologia , Infecções por Adenoviridae/terapia
2.
EBioMedicine ; 104: 105153, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38805853

RESUMO

BACKGROUND: The development of a universal influenza virus vaccine, to protect against both seasonal and pandemic influenza A viruses, is a long-standing public health goal. The conserved stalk domain of haemagglutinin (HA) is a promising vaccine target. However, the stalk is immunosubdominant. As such, innovative approaches are required to elicit robust immunity against this domain. In a previously reported observer-blind, randomised placebo-controlled phase I trial (NCT03300050), immunisation regimens using chimeric HA (cHA)-based immunogens formulated as inactivated influenza vaccines (IIV) -/+ AS03 adjuvant, or live attenuated influenza vaccines (LAIV), elicited durable HA stalk-specific antibodies with broad reactivity. In this study, we sought to determine if these vaccines could also boost T cell responses against HA stalk, and nucleoprotein (NP). METHODS: We measured interferon-γ (IFN-γ) responses by Enzyme-Linked ImmunoSpot (ELISpot) assay at baseline, seven days post-prime, pre-boost and seven days post-boost following heterologous prime:boost regimens of LAIV and/or adjuvanted/unadjuvanted IIV-cHA vaccines. FINDINGS: Our findings demonstrate that immunisation with adjuvanted cHA-based IIVs boost HA stalk-specific and NP-specific T cell responses in humans. To date, it has been unclear if HA stalk-specific T cells can be boosted in humans by HA-stalk focused universal vaccines. Therefore, our study will provide valuable insights for the design of future studies to determine the precise role of HA stalk-specific T cells in broad protection. INTERPRETATION: Considering that cHA-based vaccines also elicit stalk-specific antibodies, these data support the further clinical advancement of cHA-based universal influenza vaccine candidates. FUNDING: This study was funded in part by the Bill and Melinda Gates Foundation (BMGF).


Assuntos
Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Imunidade Celular , Vacinas contra Influenza , Influenza Humana , Humanos , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/imunologia , Anticorpos Antivirais/imunologia , Feminino , Adulto , Masculino , Linfócitos T/imunologia , Imunização Secundária , Interferon gama/metabolismo , Nucleoproteínas/imunologia , Adulto Jovem , Vírus da Influenza A/imunologia
4.
Mol Ther ; 30(5): 2024-2047, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34999208

RESUMO

Conventional influenza vaccines fail to confer broad protection against diverse influenza A viruses with pandemic potential. Efforts to develop a universal influenza virus vaccine include refocusing immunity towards the highly conserved stalk domain of the influenza virus surface glycoprotein, hemagglutinin (HA). We constructed a non-replicating adenoviral (Ad) vector, encoding a secreted form of H1 HA, to evaluate HA stalk-focused immunity. The Ad5_H1 vaccine was tested in mice for its ability to elicit broad, cross-reactive protection against homologous, heterologous, and heterosubtypic lethal challenge in a single-shot immunization regimen. Ad5_H1 elicited hemagglutination inhibition (HI+) active antibodies (Abs), which conferred 100% sterilizing protection from homologous H1N1 challenge. Furthermore, Ad5_H1 rapidly induced H1-stalk-specific Abs with Fc-mediated effector function activity, in addition to stimulating both CD4+ and CD8+ stalk-specific T cell responses. This phenotype of immunity provided 100% protection from lethal challenge with a head-mismatched, reassortant influenza virus bearing a chimeric HA, cH6/1, in a stalk-mediated manner. Most importantly, 100% protection from mortality following lethal challenge with a heterosubtypic avian influenza virus, H5N1, was observed following a single immunization with Ad5_H1. In conclusion, Ad-based influenza vaccines can elicit significant breadth of protection in naive animals and could be considered for pandemic preparedness and stockpiling.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Adenoviridae/genética , Animais , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Hemaglutininas , Humanos , Virus da Influenza A Subtipo H5N1/genética , Influenza Humana/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C
5.
J Thromb Haemost ; 19(11): 2845-2856, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34351057

RESUMO

Vaccine-induced immune thrombotic thrombocytopenia (VITT) has caused global concern. VITT is characterized by thrombosis and thrombocytopenia following COVID-19 vaccinations with the AstraZeneca ChAdOx1 nCov-19 and the Janssen Ad26.COV2.S vaccines. Patients present with thrombosis, severe thrombocytopenia developing 5-24 days following first dose of vaccine, with elevated D-dimer, and PF4 antibodies, signifying platelet activation. As of June 1, 2021, more than 1.93 billion COVID-19 vaccine doses had been administered worldwide. Currently, 467 VITT cases (0.000024%) have been reported across the UK, Europe, Canada, and Australia. Guidance on diagnosis and management of VITT has been reported but the pathogenic mechanism is yet to be fully elucidated. Here, we propose and discuss potential mechanisms in relation to adenovirus induction of VITT. We provide insights and clues into areas warranting investigation into the mechanistic basis of VITT, highlighting the unanswered questions. Further research is required to help solidify a pathogenic model for this condition.


Assuntos
COVID-19 , Trombocitopenia , Trombose , Vacinas , Ad26COVS1 , Vacinas contra COVID-19 , ChAdOx1 nCoV-19 , Humanos , SARS-CoV-2 , Vacinas/efeitos adversos
6.
J Virol ; 95(4)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33268514

RESUMO

The human adenovirus (HAdV) phylogenetic tree is diverse, divided across seven species and comprising over 100 individual types. Species D HAdV are rarely isolated with low rates of preexisting immunity, making them appealing for therapeutic applications. Several species D vectors have been developed as vaccines against infectious diseases, where they induce robust immunity in preclinical models and early phase clinical trials. However, many aspects of the basic virology of species D HAdV, including their basic receptor usage and means of cell entry, remain understudied. Here, we investigated HAdV-D49, which previously has been studied for vaccine and vascular gene transfer applications. We generated a pseudotyped HAdV-C5 presenting the HAdV-D49 fiber knob protein (HAdV-C5/D49K). This pseudotyped vector was efficient at infecting cells devoid of all known HAdV receptors, indicating HAdV-D49 uses an unidentified cellular receptor. Conversely, a pseudotyped vector presenting the fiber knob protein of the closely related HAdV-D30 (HAdV-C5/D30K), differing in four amino acids from HAdV-D49, failed to demonstrate the same tropism. These four amino acid changes resulted in a change in isoelectric point of the knob protein, with HAdV-D49K possessing a basic apical region compared to a more acidic region in HAdV-D30K. Structurally and biologically we demonstrate that HAdV-D49 knob protein is unable to engage CD46, while potential interaction with coxsackievirus and adenovirus receptor (CAR) is extremely limited by extension of the DG loop. HAdV-C5/49K efficiently transduced cancer cell lines of pancreatic, breast, lung, esophageal, and ovarian origin, indicating it may have potential for oncolytic virotherapy applications, especially for difficult to transduce tumor types.IMPORTANCE Adenoviruses are powerful tools experimentally and clinically. To maximize efficacy, the development of serotypes with low preexisting levels of immunity in the population is desirable. Consequently, attention has focused on those derived from species D, which have proven robust vaccine platforms. This widespread usage is despite limited knowledge in their basic biology and cellular tropism. We investigated the tropism of HAdV-D49, demonstrating that it uses a novel cell entry mechanism that bypasses all known HAdV receptors. We demonstrate, biologically, that a pseudotyped HAdV-C5/D49K vector efficiently transduces a wide range of cell lines, including those presenting no known adenovirus receptor. Structural investigation suggests that this broad tropism is the result of a highly basic electrostatic surface potential, since a homologous pseudotyped vector with a more acidic surface potential, HAdV-C5/D30K, does not display a similar pantropism. Therefore, HAdV-C5/D49K may form a powerful vector for therapeutic applications capable of infecting difficult to transduce cells.


Assuntos
Adenovírus Humanos/fisiologia , Proteínas do Capsídeo/fisiologia , Vetores Genéticos , Receptores Virais/metabolismo , Internalização do Vírus , Linhagem Celular Tumoral , Humanos , Neoplasias/terapia , Terapia Viral Oncolítica/métodos
7.
Mol Ther ; 28(7): 1569-1584, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32359470

RESUMO

Influenza viruses are respiratory pathogens of public health concern worldwide with up to 650,000 deaths occurring each year. Seasonal influenza virus vaccines are employed to prevent disease, but with limited effectiveness. Development of a universal influenza virus vaccine with the potential to elicit long-lasting, broadly cross-reactive immune responses is necessary for reducing influenza virus prevalence. In this study, we have utilized lipid nanoparticle-encapsulated, nucleoside-modified mRNA vaccines to intradermally deliver a combination of conserved influenza virus antigens (hemagglutinin stalk, neuraminidase, matrix-2 ion channel, and nucleoprotein) and induce strong immune responses with substantial breadth and potency in a murine model. The immunity conferred by nucleoside-modified mRNA-lipid nanoparticle vaccines provided protection from challenge with pandemic H1N1 virus at 500 times the median lethal dose after administration of a single immunization, and the combination vaccine protected from morbidity at a dose of 50 ng per antigen. The broad protective potential of a single dose of combination vaccine was confirmed by challenge with a panel of group 1 influenza A viruses. These findings support the advancement of nucleoside-modified mRNA-lipid nanoparticle vaccines expressing multiple conserved antigens as universal influenza virus vaccine candidates.


Assuntos
Antígenos Virais/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Nucleosídeos/química , Infecções por Orthomyxoviridae/prevenção & controle , Vacinas Sintéticas/administração & dosagem , Animais , Anticorpos Antivirais/metabolismo , Antígenos Virais/química , Modelos Animais de Doenças , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia , Injeções Intradérmicas , Lipossomos , Camundongos , Células NIH 3T3 , Nanopartículas , Neuraminidase/química , Neuraminidase/genética , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/genética , Infecções por Orthomyxoviridae/imunologia , Vacinas Sintéticas/química , Vacinas Sintéticas/imunologia , Vacinas de mRNA
8.
Mol Ther Methods Clin Dev ; 16: 108-125, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-31934599

RESUMO

Adenoviral (Ad) vectors represent promising vaccine platforms for infectious disease. To overcome pre-existing immunity to commonly used human adenovirus serotype 5 (Ad5), vectors based on rare species or non-human Ads are being developed. However, these vectors often exhibit reduced potency compared with Ad5, necessitating the use of innovative approaches to augment the immunogenicity of the encoded antigen (Ag). To achieve this, we engineered model Ag, enhanced green fluorescent protein (EGFP), for targeting to the surface of host-derived extracellular vesicles (EVs), namely exosomes. Exosomes are nano-sized EVs that play important roles in cell-to-cell communication and in regulating immune responses. Directed targeting of Ag to the surface of EVs/exosomes is achieved by "exosome display," through fusion of Ag to the C1C2 domain of lactadherin, a protein highly enriched in exosomes. Herein, we engineered chimpanzee adenovirus ChAdOx1 and Ad5-based vaccines encoding EGFP, or EGFP targeted to EVs (EGFP_C1C2), and compared vaccine immunogenicity in mice. We determined that exosome display substantially increases Ag-specific humoral immunity following intramuscular and intranasal vaccination, improving the immunological potency of both ChAdOx1 and Ad5. We propose that this Ag-engineering approach could increase the immunogenicity of diverse Ad vectors that exhibit desirable manufacturing characteristics, but currently lack the potency of Ad5.

9.
Front Immunol ; 11: 607333, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33633727

RESUMO

It is evident that the emergence of infectious diseases, which have the potential for spillover from animal reservoirs, pose an ongoing threat to global health. Zoonotic transmission events have increased in frequency in recent decades due to changes in human behavior, including increased international travel, the wildlife trade, deforestation, and the intensification of farming practices to meet demand for meat consumption. Influenza A viruses (IAV) possess a number of features which make them a pandemic threat and a major concern for human health. Their segmented genome and error-prone process of replication can lead to the emergence of novel reassortant viruses, for which the human population are immunologically naïve. In addition, the ability for IAVs to infect aquatic birds and domestic animals, as well as humans, increases the likelihood for reassortment and the subsequent emergence of novel viruses. Sporadic spillover events in the past few decades have resulted in human infections with highly pathogenic avian influenza (HPAI) viruses, with high mortality. The application of conventional vaccine platforms used for the prevention of seasonal influenza viruses, such as inactivated influenza vaccines (IIVs) or live-attenuated influenza vaccines (LAIVs), in the development of vaccines for HPAI viruses is fraught with challenges. These issues are associated with manufacturing under enhanced biosafety containment, and difficulties in propagating HPAI viruses in embryonated eggs, due to their propensity for lethality in eggs. Overcoming manufacturing hurdles through the use of safer backbones, such as low pathogenicity avian influenza viruses (LPAI), can also be a challenge if incompatible with master strain viruses. Non-replicating adenoviral (Ad) vectors offer a number of advantages for the development of vaccines against HPAI viruses. Their genome is stable and permits the insertion of HPAI virus antigens (Ag), which are expressed in vivo following vaccination. Therefore, their manufacture does not require enhanced biosafety facilities or procedures and is egg-independent. Importantly, Ad vaccines have an exemplary safety and immunogenicity profile in numerous human clinical trials, and can be thermostabilized for stockpiling and pandemic preparedness. This review will discuss the status of Ad-based vaccines designed to protect against avian influenza viruses with pandemic potential.


Assuntos
Adenoviridae/genética , Vetores Genéticos , Vacinas contra Influenza/uso terapêutico , Influenza Aviária/prevenção & controle , Influenza Humana/prevenção & controle , Orthomyxoviridae/patogenicidade , Zoonoses Virais , Animais , Aves , Interações Hospedeiro-Patógeno , Humanos , Imunidade Celular , Imunidade Humoral , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Influenza Aviária/imunologia , Influenza Aviária/transmissão , Influenza Aviária/virologia , Influenza Humana/imunologia , Influenza Humana/transmissão , Influenza Humana/virologia , Orthomyxoviridae/imunologia , Vacinação , Vacinas Sintéticas/genética , Vacinas Sintéticas/metabolismo , Vacinas Sintéticas/uso terapêutico
10.
Hepatology ; 71(3): 794-807, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31400152

RESUMO

BACKGROUND AND AIMS: The lack of immunocompetent small animal models for hepatitis C virus (HCV) has greatly hindered the development of effective vaccines. Using rodent hepacivirus (RHV), a homolog of HCV that shares many characteristics of HCV infection, we report the development and application of an RHV outbred rat model for HCV vaccine development. APPROACH AND RESULTS: Simian adenovirus (ChAdOx1) encoding a genetic immune enhancer (truncated shark class II invariant chain) fused to the nonstructural (NS) proteins NS3-NS5B from RHV (ChAd-NS) was used to vaccinate Sprague-Dawley rats, resulting in high levels of cluster of differentiation 8-positive (CD8+ ) T-cell responses. Following RHV challenge (using 10 or 100 times the minimum infectious dose), 42% of vaccinated rats cleared infection within 6-8 weeks, while all mock vaccinated controls became infected with high-level viremia postchallenge. A single, 7-fold higher dose of ChAd-NS increased efficacy to 67%. Boosting with ChAd-NS or with a plasmid encoding the same NS3-NS5B antigens increased efficacy to 100% and 83%, respectively. A ChAdOx1 vector encoding structural antigens (ChAd-S) was also constructed. ChAd-S alone showed no efficacy. Strikingly, when combined with ChAd-NS, ChAD-S produced 83% efficacy. Protection was associated with a strong CD8+ interferon gamma-positive recall response against NS4. Next-generation sequencing of a putative RHV escape mutant in a vaccinated rat identified mutations in both identified immunodominant CD8+ T-cell epitopes. CONCLUSIONS: A simian adenovirus vector vaccine strategy is effective at inducing complete protective immunity in the rat RHV model. The RHV Sprague-Dawley rat challenge model enables comparative testing of vaccine platforms and antigens and identification of correlates of protection and thereby provides a small animal experimental framework to guide the development of an effective vaccine for HCV in humans.


Assuntos
Hepacivirus/imunologia , Vacinação , Vacinas contra Hepatite Viral/imunologia , Adenoviridae/genética , Adenoviridae/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Epitopos de Linfócito T , Interferon gama/sangue , Masculino , Ratos , Ratos Sprague-Dawley , Vacinas Sintéticas/imunologia , Proteínas não Estruturais Virais/imunologia
11.
Sci Rep ; 8(1): 3390, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467399

RESUMO

Heterologous prime-boost vaccination with viral vectors simian adenovirus 63 (ChAd63) and Modified Vaccinia Ankara (MVA) induces potent T cell and antibody responses in humans. The 8-week regimen demonstrates significant efficacy against malaria when expressing the pre-erythrocytic malaria antigen Thrombospondin-Related Adhesion Protein fused to a multiple epitope string (ME-TRAP). We tested these vaccines in 7 new 4- and 8- week interval schedules to evaluate safety and immunogenicity of multiple ChAd63 ME-TRAP priming vaccinations (denoted A), multiple MVA ME-TRAP boosts (denoted M) and alternating vectors. All regimens exhibited acceptable reactogenicity and CD8+ T cell immunogenicity was enhanced with a 4-week interval (AM) and with incorporation of additional ChAd63 ME-TRAP vaccination at 4- or 8-weeks (AAM or A_A_M). Induction of TRAP antibodies was comparable between schedules. T cell immunity against the ChAd63 hexon did not affect T cell responses to the vaccine insert, however pre-vaccination ChAd63-specific T cells correlated with reduced TRAP antibodies. Vaccine-induced antibodies against MVA did not affect TRAP antibody induction, and correlated positively with ME-TRAP-specific T cells. This study identifies potentially more effective immunisation regimens to assess in Phase IIa trials and demonstrates a degree of flexibility with the timing of vectored vaccine administration, aiding incorporation into existing vaccination programmes.


Assuntos
Epitopos/imunologia , Vetores Genéticos/imunologia , Fígado/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Adenovirus dos Símios/imunologia , Adolescente , Adulto , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Humanos , Imunização Secundária/métodos , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Vacinação/métodos , Vacínia/imunologia , Vaccinia virus/imunologia , Adulto Jovem
12.
Front Immunol ; 8: 1551, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29213269

RESUMO

BACKGROUND: Heterologous prime-boost vaccination with chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) encoding multiple epitope string thrombospondin-related adhesion protein (ME-TRAP) has shown acceptable safety and promising immunogenicity in African adult and pediatric populations. If licensed, this vaccine could be given to infants receiving routine childhood immunizations. We therefore evaluated responses to ChAd63 MVA ME-TRAP when co-administered with routine Expanded Program on Immunization (EPI) vaccines. METHODS: We enrolled 65 Gambian infants and neonates, aged 16, 8, or 1 week at first vaccination and randomized them to receive either ME-TRAP and EPI vaccines or EPI vaccines only. Safety was assessed by the description of vaccine-related adverse events (AEs). Immunogenicity was evaluated using IFNγ enzyme-linked immunospot, whole-blood flow cytometry, and anti-TRAP IgG ELISA. Serology was performed to confirm all infants achieved protective titers to EPI vaccines. RESULTS: The vaccines were well tolerated in all age groups with no vaccine-related serious AEs. High-level TRAP-specific IgG and T cell responses were generated after boosting with MVA. CD8+ T cell responses, previously found to correlate with protection, were induced in all groups. Antibody responses to EPI vaccines were not altered significantly. CONCLUSION: Malaria vectored prime-boost vaccines co-administered with routine childhood immunizations were well tolerated. Potent humoral and cellular immunity induced by ChAd63 MVA ME-TRAP did not reduce the immunogenicity of co-administered EPI vaccines, supporting further evaluation of this regimen in infant populations. CLINICAL TRIAL REGISTRATION: The clinical trial was registered on http://Clinicaltrials.gov (NCT02083887) and the Pan-African Clinical Trials Registry (PACTR201402000749217).

13.
Mol Ther ; 25(2): 547-559, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28153101

RESUMO

Heterologous prime-boosting with viral vectors encoding the pre-erythrocytic antigen thrombospondin-related adhesion protein fused to a multiple epitope string (ME-TRAP) induces CD8+ T cell-mediated immunity to malaria sporozoite challenge in European malaria-naive and Kenyan semi-immune adults. This approach has yet to be evaluated in children and infants. We assessed this vaccine strategy among 138 Gambian and Burkinabe children in four cohorts: 2- to 6-year olds in The Gambia, 5- to 17-month-olds in Burkina Faso, and 5- to 12-month-olds and 10-week-olds in The Gambia. We assessed induction of cellular immunity, taking into account the distinctive hematological status of young infants, and characterized the antibody response to vaccination. T cell responses peaked 7 days after boosting with modified vaccinia virus Ankara (MVA), with highest responses in infants aged 10 weeks at priming. Incorporating lymphocyte count into the calculation of T cell responses facilitated a more physiologically relevant comparison of cellular immunity across different age groups. Both CD8+ and CD4+ T cells secreted cytokines. Induced antibodies were up to 20-fold higher in all groups compared with Gambian and United Kingdom (UK) adults, with comparable or higher avidity. This immunization regimen elicited strong immune responses, particularly in young infants, supporting future evaluation of efficacy in this key target age group for a malaria vaccine.


Assuntos
Anticorpos Antiprotozoários/imunologia , Vetores Genéticos , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Linfócitos T/imunologia , África Ocidental , Anticorpos Antiprotozoários/sangue , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Vetores Genéticos/efeitos adversos , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Humanos , Imunidade Celular , Imunidade Humoral , Isotipos de Imunoglobulinas/sangue , Isotipos de Imunoglobulinas/imunologia , Lactente , Recém-Nascido , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/genética , Linfócitos T/metabolismo , Vacinação
14.
J Infect Dis ; 214(5): 772-81, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27307573

RESUMO

BACKGROUND: The need for a highly efficacious vaccine against Plasmodium falciparum remains pressing. In this controlled human malaria infection (CHMI) study, we assessed the safety, efficacy and immunogenicity of a schedule combining 2 distinct vaccine types in a staggered immunization regimen: one inducing high-titer antibodies to circumsporozoite protein (RTS,S/AS01B) and the other inducing potent T-cell responses to thrombospondin-related adhesion protein (TRAP) by using a viral vector. METHOD: Thirty-seven healthy malaria-naive adults were vaccinated with either a chimpanzee adenovirus 63 and modified vaccinia virus Ankara-vectored vaccine expressing a multiepitope string fused to TRAP and 3 doses of RTS,S/AS01B (group 1; n = 20) or 3 doses of RTS,S/AS01B alone (group 2; n = 17). CHMI was delivered by mosquito bites to 33 vaccinated subjects at week 12 after the first vaccination and to 6 unvaccinated controls. RESULTS: No suspected unexpected serious adverse reactions or severe adverse events related to vaccination were reported. Protective vaccine efficacy was observed in 14 of 17 subjects (82.4%) in group 1 and 12 of 16 subjects (75%) in group 2. All control subjects received a diagnosis of blood-stage malaria parasite infection. Both vaccination regimens were immunogenic. Fourteen protected subjects underwent repeat CHMI 6 months after initial CHMI; 7 of 8 (87.5%) in group 1 and 5 of 6 (83.3%) in group 2 remained protected. CONCLUSIONS: The high level of sterile efficacy observed in this trial is encouraging for further evaluation of combination approaches using these vaccine types. CLINICAL TRIALS REGISTRATION: NCT01883609.


Assuntos
Portadores de Fármacos , Esquemas de Imunização , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Proteínas de Protozoários/imunologia , Adenoviridae/genética , Adolescente , Adulto , Animais , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Feminino , Voluntários Saudáveis , Humanos , Vacinas Antimaláricas/administração & dosagem , Masculino , Pessoa de Meia-Idade , Proteínas de Protozoários/administração & dosagem , Resultado do Tratamento , Vacinas Combinadas/administração & dosagem , Vacinas Combinadas/efeitos adversos , Vacinas Combinadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Vaccinia virus/genética , Adulto Jovem
15.
Environ Microbiol ; 17(4): 938-46, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25588789

RESUMO

A free-range broiler breeder flock was studied in order to determine the natural patterns of Campylobacter colonization over a period of 63 weeks. Campylobacter sequence types (STs) were not mutually exclusive and on average colonized only 17.7% of the birds tested at any time. Campylobacter STs typically reached a peak in prevalence upon initial detection in the flock before tailing off, although the ST and antigenic flaA short variable region in combination were stable over a number of months. There was evidence that, with a couple of exceptions, the ecology of C. jejuni and C. coli differed, with the latter forming a more stable population. Despite being free range, no newly colonizing STs were detected over a 6-week period in autumn and a 10-week period in winter, towards the end of the study. There was limited evidence that those STs identified among broiler chicken flocks on the same farm site were likely to colonize the breeder flock earlier (R(2) 0.16, P 0.01). These results suggest that there is natural control of Campylobacter dynamics within a flock which could potentially be exploited in designing new intervention strategies, and that the two different species should perhaps be considered separately.


Assuntos
Infecções por Campylobacter/epidemiologia , Campylobacter/classificação , Galinhas/microbiologia , Microbiologia de Alimentos , Doenças das Aves Domésticas/epidemiologia , Criação de Animais Domésticos/métodos , Animais , Campylobacter/genética , Campylobacter/isolamento & purificação , Infecções por Campylobacter/microbiologia , Variação Genética , Tipagem de Sequências Multilocus
16.
J Infect Dis ; 211(7): 1076-86, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25336730

RESUMO

BACKGROUND: Circumsporozoite protein (CS) is the antigenic target for RTS,S, the most advanced malaria vaccine to date. Heterologous prime-boost with the viral vectors simian adenovirus 63 (ChAd63)-modified vaccinia virus Ankara (MVA) is the most potent inducer of T-cells in humans, demonstrating significant efficacy when expressing the preerythrocytic antigen insert multiple epitope-thrombospondin-related adhesion protein (ME-TRAP). We hypothesized that ChAd63-MVA containing CS may result in a significant clinical protective efficacy. METHODS: We conducted an open-label, 2-site, partially randomized Plasmodium falciparum sporozoite controlled human malaria infection (CHMI) study to compare the clinical efficacy of ChAd63-MVA CS with ChAd63-MVA ME-TRAP. RESULTS: One of 15 vaccinees (7%) receiving ChAd63-MVA CS and 2 of 15 (13%) receiving ChAd63-MVA ME-TRAP achieved sterile protection after CHMI. Three of 15 vaccinees (20%) receiving ChAd63-MVA CS and 5 of 15 (33%) receiving ChAd63-MVA ME-TRAP demonstrated a delay in time to treatment, compared with unvaccinated controls. In quantitative polymerase chain reaction analyses, ChAd63-MVA CS was estimated to reduce the liver parasite burden by 69%-79%, compared with 79%-84% for ChAd63-MVA ME-TRAP. CONCLUSIONS: ChAd63-MVA CS does reduce the liver parasite burden, but ChAd63-MVA ME-TRAP remains the most promising antigenic insert for a vectored liver-stage vaccine. Detailed analyses of parasite kinetics may allow detection of smaller but biologically important differences in vaccine efficacy that can influence future vaccine development. CLINICAL TRIALS REGISTRATION: NCT01623557.


Assuntos
Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Adenovirus dos Símios/genética , Adenovirus dos Símios/imunologia , Adolescente , Adulto , Anticorpos Antiprotozoários/biossíntese , Epitopos/imunologia , Feminino , Vetores Genéticos , Humanos , Interferon gama/imunologia , Fígado/virologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Adulto Jovem
17.
PLoS One ; 9(12): e115161, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25522180

RESUMO

BACKGROUND: Plasmodium falciparum (P. falciparum) malaria remains a significant cause of mortality and morbidity throughout the world. Development of an effective vaccine would be a key intervention to reduce the considerable social and economic impact of malaria. METHODOLOGY: We conducted a Phase Ia, non-randomized, clinical trial in 24 healthy, malaria-naïve adults of the chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) replication-deficient viral vectored vaccines encoding the circumsporozoite protein (CS) of P. falciparum. RESULTS: ChAd63-MVA CS administered in a heterologous prime-boost regime was shown to be safe and immunogenic, inducing high-level T cell responses to CS. With a priming ChAd63 CS dose of 5×109 vp responses peaked at a mean of 1947 SFC/million PBMC (median 1524) measured by ELIspot 7 days after the MVA boost and showed a mixed CD4+/CD8+ phenotype. With a higher priming dose of ChAd63 CS dose 5×1010 vp T cell responses did not increase (mean 1659 SFC/million PBMC, median 1049). Serum IgG responses to CS were modest and peaked at day 14 post ChAd63 CS (median antibody concentration for all groups at day 14 of 1.3 µg/ml (range 0-11.9), but persisted throughout late follow-up (day 140 median antibody concentration groups 1B & 2B 0.9 µg/ml (range 0-4.7). CONCLUSIONS: ChAd63-MVA is a safe and highly immunogenic delivery platform for the CS antigen in humans which warrants efficacy testing. TRIAL REGISTRATION: ClinicalTrials.gov NCT01450280.


Assuntos
Vacinas Antimaláricas/efeitos adversos , Vacinas Virais/efeitos adversos , Adenovirus dos Símios/genética , Adenovirus dos Símios/imunologia , Adolescente , Adulto , Feminino , Humanos , Imunoglobulina G/sangue , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Pessoa de Meia-Idade , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Vacinas de DNA , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia
18.
PLoS One ; 9(9): e107903, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25254500

RESUMO

The development of protective vaccines against many difficult infectious pathogens will necessitate the induction of effective antibody responses. Here we assess humoral immune responses against two antigens from the blood-stage merozoite of the Plasmodium falciparum human malaria parasite--MSP1 and AMA1. These antigens were delivered to healthy malaria-naïve adult volunteers in Phase Ia clinical trials using recombinant replication-deficient viral vectors--ChAd63 to prime the immune response and MVA to boost. In subsequent Phase IIa clinical trials, immunized volunteers underwent controlled human malaria infection (CHMI) with P. falciparum to assess vaccine efficacy, whereby all but one volunteer developed low-density blood-stage parasitemia. Here we assess serum antibody responses against both the MSP1 and AMA1 antigens following i) ChAd63-MVA immunization, ii) immunization and CHMI, and iii) primary malaria exposure in the context of CHMI in unimmunized control volunteers. Responses were also assessed in a cohort of naturally-immune Kenyan adults to provide comparison with those induced by a lifetime of natural malaria exposure. Serum antibody responses against MSP1 and AMA1 were characterized in terms of i) total IgG responses before and after CHMI, ii) responses to allelic variants of MSP1 and AMA1, iii) functional growth inhibitory activity (GIA), iv) IgG avidity, and v) isotype responses (IgG1-4, IgA and IgM). These data provide the first in-depth assessment of the quality of adenovirus-MVA vaccine-induced antibody responses in humans, along with assessment of how these responses are modulated by subsequent low-density parasite exposure. Notable differences were observed in qualitative aspects of the human antibody responses against these malaria antigens depending on the means of their induction and/or exposure of the host to the malaria parasite. Given the continued clinical development of viral vectored vaccines for malaria and a range of other diseases targets, these data should help to guide further immuno-monitoring studies of vaccine-induced human antibody responses.


Assuntos
Adenoviridae/imunologia , Antígenos de Protozoários/imunologia , Imunidade Humoral/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Vacinação/métodos , Vaccinia virus/imunologia , Adenoviridae/genética , Animais , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Sangue/parasitologia , Exposição Ambiental/efeitos adversos , Humanos , Imunoglobulina G/biossíntese , Imunoglobulina G/imunologia , Vacinas Antimaláricas/genética , Malária Falciparum/sangue , Malária Falciparum/imunologia , Pan troglodytes , Plasmodium falciparum/imunologia , Plasmodium falciparum/fisiologia , Especificidade da Espécie , Vaccinia virus/genética
19.
Mol Ther ; 22(11): 1992-2003, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24930599

RESUMO

To induce a deployable level of efficacy, a successful malaria vaccine would likely benefit from both potent cellular and humoral immunity. These requirements are met by a heterologous prime-boost immunization strategy employing a chimpanzee adenovirus vector followed by modified vaccinia Ankara (MVA), both encoding the pre-erythrocytic malaria antigen ME-thrombospondin-related adhesive protein (TRAP), with high immunogenicity and significant efficacy in UK adults. We undertook two phase 1b open-label studies in adults in Kenya and The Gambia in areas of similar seasonal malaria transmission dynamics and have previously reported safety and basic immunogenicity data. We now report flow cytometry and additional interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) data characterizing pre-existing and induced cellular immunity as well as anti-TRAP IgG responses. T-cell responses induced by vaccination averaged 1,254 spot-forming cells (SFC) per million peripheral blood mononuclear cells (PBMC) across both trials and flow cytometry revealed cytokine production from both CD4(+) and CD8(+) T cells with the frequency of CD8(+) IFN-γ-secreting monofunctional T cells (previously shown to associate with vaccine efficacy) particularly high in Kenyan adults. Immunization with ChAd63 and MVA ME-TRAP induced strong cellular and humoral immune responses in adults living in two malaria-endemic regions of Africa. This prime-boost approach targeting the pre-erythrocytic stage of the malaria life-cycle is now being assessed for efficacy in a target population.


Assuntos
Adenovirus dos Símios/genética , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/prevenção & controle , Proteínas de Protozoários/imunologia , Vaccinia virus/genética , Adulto , Doenças Endêmicas , Gâmbia/epidemiologia , Humanos , Imunização Secundária , Quênia/epidemiologia , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Malária Falciparum/epidemiologia , Proteínas de Protozoários/genética , Linfócitos T/imunologia , Reino Unido
20.
Immunology ; 141(4): 628-44, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24303947

RESUMO

Acquisition of non-sterilizing natural immunity to Plasmodium falciparum malaria has been shown in low transmission areas following multiple exposures. However, conflicting data from endemic areas suggest that the parasite may interfere with the induction of effective B-cell responses. To date, the impact of blood-stage parasite exposure on antigen-specific B cells has not been reported following controlled human malaria infection (CHMI). Here we analysed human B-cell responses in a series of Phase I/IIa clinical trials, which include CHMI, using candidate virus-vectored vaccines encoding two blood-stage antigens: merozoite surface protein 1 (MSP1) and apical membrane antigen 1 (AMA1). Previously vaccinated volunteers show boosting of pre-existing antigen-specific memory B-cell (mBC) responses following CHMI. In contrast, unvaccinated malaria-naive control volunteers developed an mBC response against MSP1 but not AMA1. Serum IgG correlated with the mBC response after booster vaccination but this relationship was less well maintained following CHMI. A significant reduction in peripheral MSP1-specific mBC was observed at the point of diagnosis of blood-stage infection. This was coincident with a reduction in peripheral blood B-cell subsets expressing CXCR3 and elevated serum levels of interferon-γ and CXCL9, suggesting migration away from the periphery. These CHMI data confirm that mBC and antibody responses can be induced and boosted by blood-stage parasite exposure, in support of epidemiological studies on low-level parasite exposure.


Assuntos
Adenoviridae/genética , Antígenos de Protozoários/administração & dosagem , Linfócitos B/efeitos dos fármacos , Imunização , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/prevenção & controle , Proteínas de Membrana/administração & dosagem , Proteína 1 de Superfície de Merozoito/administração & dosagem , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/administração & dosagem , Vaccinia virus/genética , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B/parasitologia , Quimiocina CXCL9/sangue , Vetores Genéticos , Humanos , Esquemas de Imunização , Imunização Secundária , Imunoglobulina G/sangue , Memória Imunológica , Interferon gama/sangue , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Malária Falciparum/sangue , Malária Falciparum/diagnóstico , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteína 1 de Superfície de Merozoito/genética , Proteína 1 de Superfície de Merozoito/imunologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Receptores CXCR3/sangue , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...