Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 688, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926396

RESUMO

Automated medical image analysis systems often require large amounts of training data with high quality labels, which are difficult and time consuming to generate. This paper introduces Radiology Object in COntext version 2 (ROCOv2), a multimodal dataset consisting of radiological images and associated medical concepts and captions extracted from the PMC Open Access subset. It is an updated version of the ROCO dataset published in 2018, and adds 35,705 new images added to PMC since 2018. It further provides manually curated concepts for imaging modalities with additional anatomical and directional concepts for X-rays. The dataset consists of 79,789 images and has been used, with minor modifications, in the concept detection and caption prediction tasks of ImageCLEFmedical Caption 2023. The dataset is suitable for training image annotation models based on image-caption pairs, or for multi-label image classification using Unified Medical Language System (UMLS) concepts provided with each image. In addition, it can serve for pre-training of medical domain models, and evaluation of deep learning models for multi-task learning.


Assuntos
Imagem Multimodal , Radiologia , Humanos , Processamento de Imagem Assistida por Computador , Unified Medical Language System
2.
Comput Biol Med ; 170: 108029, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308870

RESUMO

Black-box deep learning (DL) models trained for the early detection of Alzheimer's Disease (AD) often lack systematic model interpretation. This work computes the activated brain regions during DL and compares those with classical Machine Learning (ML) explanations. The architectures used for DL were 3D DenseNets, EfficientNets, and Squeeze-and-Excitation (SE) networks. The classical models include Random Forests (RFs), Support Vector Machines (SVMs), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting (LightGBM), Decision Trees (DTs), and Logistic Regression (LR). For explanations, SHapley Additive exPlanations (SHAP) values, Local Interpretable Model-agnostic Explanations (LIME), Gradient-weighted Class Activation Mapping (GradCAM), GradCAM++ and permutation-based feature importance were implemented. During interpretation, correlated features were consolidated into aspects. All models were trained on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. The validation includes internal and external validation on the Australian Imaging and Lifestyle flagship study of Ageing (AIBL) and the Open Access Series of Imaging Studies (OASIS). DL and ML models reached similar classification performances. Regarding the brain regions, both types focus on different regions. The ML models focus on the inferior and middle temporal gyri, and the hippocampus, and amygdala regions previously associated with AD. The DL models focus on a wider range of regions including the optical chiasm, the entorhinal cortices, the left and right vessels, and the 4th ventricle which were partially associated with AD. One explanation for the differences is the input features (textures vs. volumes). Both types show reasonable similarity to a ground truth Voxel-Based Morphometry (VBM) analysis. Slightly higher similarities were measured for ML models.


Assuntos
Doença de Alzheimer , Aprendizado Profundo , Humanos , Imageamento por Ressonância Magnética/métodos , Doença de Alzheimer/diagnóstico por imagem , Austrália , Aprendizado de Máquina
3.
Alzheimers Res Ther ; 13(1): 155, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526114

RESUMO

BACKGROUND: For the recruitment and monitoring of subjects for therapy studies, it is important to predict whether mild cognitive impaired (MCI) subjects will prospectively develop Alzheimer's disease (AD). Machine learning (ML) is suitable to improve early AD prediction. The etiology of AD is heterogeneous, which leads to high variability in disease patterns. Further variability originates from multicentric study designs, varying acquisition protocols, and errors in the preprocessing of magnetic resonance imaging (MRI) scans. The high variability makes the differentiation between signal and noise difficult and may lead to overfitting. This article examines whether an automatic and fair data valuation method based on Shapley values can identify the most informative subjects to improve ML classification. METHODS: An ML workflow was developed and trained for a subset of the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. The validation was executed for an independent ADNI test set and for the Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing (AIBL) cohort. The workflow included volumetric MRI feature extraction, feature selection, sample selection using Data Shapley, random forest (RF), and eXtreme Gradient Boosting (XGBoost) for model training as well as Kernel SHapley Additive exPlanations (SHAP) values for model interpretation. RESULTS: The RF models, which excluded 134 of the 467 training subjects based on their RF Data Shapley values, outperformed the base models that reached a mean accuracy of 62.64% by 5.76% (3.61 percentage points) for the independent ADNI test set. The XGBoost base models reached a mean accuracy of 60.00% for the AIBL data set. The exclusion of those 133 subjects with the smallest RF Data Shapley values could improve the classification accuracy by 2.98% (1.79 percentage points). The cutoff values were calculated using an independent validation set. CONCLUSION: The Data Shapley method was able to improve the mean accuracies for the test sets. The most informative subjects were associated with the number of ApolipoproteinE ε4 (ApoE ε4) alleles, cognitive test results, and volumetric MRI measurements.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Austrália , Disfunção Cognitiva/diagnóstico por imagem , Análise de Dados , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética
4.
PLoS One ; 15(9): e0236868, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32976486

RESUMO

Detection and diagnosis of early and subclinical stages of Alzheimer's Disease (AD) play an essential role in the implementation of intervention and prevention strategies. Neuroimaging techniques predominantly provide insight into anatomic structure changes associated with AD. Deep learning methods have been extensively applied towards creating and evaluating models capable of differentiating between cognitively unimpaired, patients with Mild Cognitive Impairment (MCI) and AD dementia. Several published approaches apply information fusion techniques, providing ways of combining several input sources in the medical domain, which contributes to knowledge of broader and enriched quality. The aim of this paper is to fuse sociodemographic data such as age, marital status, education and gender, and genetic data (presence of an apolipoprotein E (APOE)-ε4 allele) with Magnetic Resonance Imaging (MRI) scans. This enables enriched multi-modal features, that adequately represent the MRI scan visually and is adopted for creating and modeling classification systems capable of detecting amnestic MCI (aMCI). To fully utilize the potential of deep convolutional neural networks, two extra color layers denoting contrast intensified and blurred image adaptations are virtually augmented to each MRI scan, completing the Red-Green-Blue (RGB) color channels. Deep convolutional activation features (DeCAF) are extracted from the average pooling layer of the deep learning system Inception_v3. These features from the fused MRI scans are used as visual representation for the Long Short-Term Memory (LSTM) based Recurrent Neural Network (RNN) classification model. The proposed approach is evaluated on a sub-study containing 120 participants (aMCI = 61 and cognitively unimpaired = 59) of the Heinz Nixdorf Recall (HNR) Study with a baseline model accuracy of 76%. Further evaluation was conducted on the ADNI Phase 1 dataset with 624 participants (aMCI = 397 and cognitively unimpaired = 227) with a baseline model accuracy of 66.27%. Experimental results show that the proposed approach achieves 90% accuracy and 0.90 F1-Score at classification of aMCI vs. cognitively unimpaired participants on the HNR Study dataset, and 77% accuracy and 0.83 F1-Score on the ADNI dataset.


Assuntos
Apolipoproteínas E/genética , Disfunção Cognitiva/diagnóstico , Imageamento por Ressonância Magnética , Neuroimagem , Idoso , Idoso de 80 Anos ou mais , Disfunção Cognitiva/patologia , Conjuntos de Dados como Assunto , Aprendizado Profundo , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores Socioeconômicos
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 2396-2401, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946382

RESUMO

Volumetric measurements from magnetic resonance imaging (MRI) scans can be used to predict the future conversion to Alzheimer's disease (AD) for patients with mild cognitive impairment (MCI). Previous studies achieved good classification results using the volumes of a single as well as multiple scans per subject. The purpose of this study is to evaluate, if and how volumetric features of a baseline (BL) and a follow-up (FU) MRI scan can be combined to improve classification accuracy. For this reason, random forest (RF) models were trained on different volumetric feature sets of 513 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and 22 subjects from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) database. The results show that models, which use combinations of both acquisition times yield better accuracies in comparison to the models solely based on FU or BL data. Furthermore, a clear pattern of which combination of representations performs best could not be found. The best model achieves a test classification accuracy of 75.49% (specificity: 80.52%, sensitivity: 60%). Models trained with cognitive test results and MRI data outperform models which use only MRI data. The observed results could not be reproduced on the AIBL dataset.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Neuroimagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...