Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Pharmacol Ther ; 114(5): 1093-1103, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37562824

RESUMO

Transient receptor potential Ankyrin 1 (TRPA1) is an ion channel expressed by sensory neurons, where it mediates pain signaling. Consequently, it has emerged as a promising target for novel analgesics, yet, to date, no TRPA1 antagonists have been approved for clinical use. In the present translational study, we utilized dermal blood flow changes evoked by TRPA1 agonist cinnamaldehyde as a target engagement biomarker to investigate the in vivo pharmacology of LY3526318, a novel TRPA1 antagonist. In rats, LY3526318 (1, 3, and 10 mg/kg, p.o.) dose-dependently reduced the cutaneous vasodilation typically observed following topical application of 10% v/v cinnamaldehyde. The inhibition was significant at the site of cinnamaldehyde application and also when including an adjacent area of skin. Similarly, in a cohort of 16 healthy human volunteers, LY3526318 administration (10, 30, and 100 mg, p.o.) dose-dependently reduced the elevated blood flow surrounding the site of 10% v/v cinnamaldehyde application, with a trend toward inhibition at the site of application. Comparisons between both species reveal that the effects of LY3526318 on the cinnamaldehyde-induced dermal blood flow are greater in rats relative to humans, even when adjusting for cross-species differences in potency of the compound at TRPA1. Exposure-response relationships suggest that a greater magnitude response may be observed in humans if higher antagonist concentrations could be achieved. Taken together, these results demonstrate that cinnamaldehyde-evoked changes in dermal blood flow can be utilized as a target engagement biomarker for TRPA1 activity and that LY3526318 antagonizes the ion channel both in rats and humans.

2.
Clin Neurophysiol Pract ; 8: 71-78, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181417

RESUMO

Objective: Standard nerve excitability testing (NET) predominantly assesses Aα- and Aß-fiber function, but a method examining small afferents would be of great interest in pain studies. Here, we examined the properties of a novel perception threshold tracking (PTT) method that preferentially activates Aδ-fibers using weak currents delivered by a novel multipin electrode and compared its reliability with NET. Methods: Eighteen healthy subjects (mean age:34.06 ±â€¯2.0) were examined three times with motor and sensory NET and PTT in morning and afternoon sessions on the same day (intra-day reliability) and after a week (inter-day reliability). NET was performed on the median nerve, while PTT stimuli were delivered through a multipin electrode located on the forearm. During PTT, subjects indicated stimulus perception via a button press and the intensity of the current was automatically increased or decreased accordingly by Qtrac software. This allowed changes in the perception threshold to be tracked during strength-duration time constant (SDTC) and threshold electrotonus protocols. Results: The coefficient of variation (CoV) and interclass coefficient of variation (ICC) showed good-excellent reliability for most NET parameters. PTT showed poor reliability for both SDTC and threshold electrotonus parameters. There was a significant correlation between large (sensory NET) and small (PTT) fiber SDTC when all sessions were pooled (r = 0.29, p = 0.03). Conclusions: Threshold tracking technique can be applied directly to small fibers via a psychophysical readout, but with the current technique, the reliability is poor. Significance: Further studies are needed to examine whether Aß-fiber SDTC may be a surrogate biomarker for peripheral nociceptive signalling.

4.
Neurophysiol Clin ; 51(6): 517-523, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34756635

RESUMO

OBJECTIVES: Although somatosensory evoked potentials (SEPs) after median nerve stimulation are widely used in clinical practice, the dorsal horn generator of the N13 SEP spinal component is not clearly understood. To verify whether wide dynamic range neurons in the dorsal horn of the spinal cord are involved in the generation of the N13 SEP, we tested the effect of heterotopic noxious conditioning stimulation, which modulates wide dynamic range neurons, on N13 SEP in healthy humans. METHODS: In 12 healthy subjects, we performed the cold pressor test on the left foot as a heterotopic noxious conditioning stimulus to modulate wide dynamic range neurons. To verify the effectiveness of heterotopic noxious conditioning stimulation, we tested the pressure pain threshold at the thenar muscles of the right hand and recorded SEPs after right median nerve stimulation before, during and after the cold pressor test. RESULTS: The cold pressor test increased pressure pain threshold by 15% (p = 0.04). During the cold pressor test, the amplitude of the N13 component was significantly lower than that recorded at baseline (by 25%, p = 0.04). DISCUSSION: In this neurophysiological study in healthy humans, we showed that a heterotopic noxious conditioning stimulus significantly reduced N13 SEP amplitude. This finding suggests that the N13 SEP might be generated by the segmental postsynaptic response of dorsal horn wide dynamic range neurons.


Assuntos
Potenciais Somatossensoriais Evocados , Nervo Mediano , Estimulação Elétrica , Mãos , Humanos , Neurônios , Medula Espinal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...