Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Biophys ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498099

RESUMO

In vitro cellular models provide valuable insights into the adaptive biochemical mechanisms triggered by cells to cope with the stress situation induced by hypoxia and reoxygenation cycles. The first biological data generated in studies based on this micrometric life-scale has the potential to provide us a global overview about the main biochemical phenomena presented in some reported preconditioning therapies in life-scale of higher dimensions. Thus, in this study, a cell incubator was designed and manufactured to produce a cellular model of heart hypoxia followed by reoxygenation (HfR) through consecutive repetitions of hypoxia-normoxia gas exchange. Samples of cellular extracts and culture media were obtained from non-proliferative cardiomyocytes (CMs) cultivated under challenging HfR (stressed CMs) and regular cultivation (unstressed CMs) in rounds of four days for each case. Metabolomic based on proton magnetic resonance spectroscopy (1H-MRS) was used as an analytical approach to identify and quantify the metabolomes of these samples, the endo- and exo-metabolome. Despite the stressed CMs presented over 90% higher cellular death rate compared to the unstressed CMs, the metabolic profiles indicates that the surviving cells up-regulate their amino acid metabolism either by active protein degradation or by the consumption of culture media components to increase coenzyme A-dependent metabolic pathways. This cell auto-regulation mechanism could be well characterized in the first two days when the difference smears off under once the metabolomes become similar. The metabolic adaptations of stressed CMs identified the relevance of the cyclic oxidation/reduction reactions of nicotinamide adenine dinucleotide phosphate molecules, NADP+/NADPH, and the increased tricarboxylic acid cycle activity in an environment overloaded with such a powerful antioxidant agent to survive an extreme HfR challenge. Thus, the combination of cellular models based on CMs, investigative methods, such as metabolomic and 1H-MRS, and the instrumental development of hypoxia incubator shown in this work were able to provide the first biochemical evidences behind therapies of gaseous exchanges paving the way to future assays.

2.
J Fluoresc ; 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38183590

RESUMO

The interaction between silver nanoparticles (AgNPs) and molecules producing coronas plays a key role in cytotoxicity mechanisms. Once adsorbed coronas determine the destiny of nanomaterials in vivo, their effective deployment in the biomedical field requires a comprehensive understanding of the dynamic interactions of biomolecules with nanoparticles. In this work, we characterized 40 nm AgNPs in three different nutritional cell media at different molar concentrations and incubation times to study the binding mechanism of molecules on surface nanoparticles. In addition, their cytotoxic effects have been studied in three cell lineages used as tissue regeneration models: FN1, HUV-EC-C, RAW 264.7. According to the data, when biomolecules from DMEM medium were in contact with AgNPs, agglomeration and precipitation occurred. However, FBS medium proteins indicated the formation of coronas over the nanoparticles. Nonetheless, little adsorption of molecules around the nanoparticles was observed when compared to DMEM supplemented with 10% FBS. These findings indicate that when nanoparticles and bioproteins from supplemented media interact, inorganic salts from DMEM contribute to produce large bio-coronas, the size of which varies with the concentration and time. The static quenching mechanism was shown to be responsible for the fluorescence quenching of the bioprotein aggregates on the AgNPs surface. The calculated bioprotein-nanoparticle surface binding constants were on the order of 105 M-1 at 37 °C, with hydrophobic interactions driven by enthalpy and entropy playing a role, as confirmed by thermodynamic analysis. Cytotoxicity data showed a systematic degrowth in the viable cell population as the number of nanoparticles increased and the diameter of coronas decreased. Cytotoxic intervals associated with half decrease of cell population were established for AgNPs molar concentration of 75 µM for 24 h and 50 µM for 48 h. In summary, through the cytotoxicity mechanism of bio-coronas we are able to manipulate cells' expansion rates to promote specific processes, such inflammatory mechanisms, at different time instants.

3.
In Vitro Cell Dev Biol Anim ; 56(8): 604-613, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32914385

RESUMO

Knockout of multifunction gene cysteine- and glycine-rich protein 3 (CSRP3) in cardiomyocytes (CMs) of mice leads to heart dilation, severely affecting its functions. In humans, CSRP3 mutations are associated with hypertrophic (HCM) and dilated cardiomyopathy (DCM). The absence of the CSRP3 expression produces unknown effects on in vitro neonatal CMs' metabolism. The metabolome changes in culture media conditioned by CSRP3 knockout (KO-CSRP3), and wild type (WT) neonatal cardiomyocytes were investigated under untreated or after metabolic challenging conditions produced by isoproterenol (ISO) stimulation, by in vitro high-resolution proton magnetic resonance spectroscopy (1H-MRS)-based metabolomics. Metabolic differences between neonatal KO-CSRP3 and WT rats' CMs were identified. After 72 h of culture, ISO administration was associated with increased CMs' energy requirements and increased levels of threonine, alanine, and 3-hydroxybutyrate in both neonatal KO-CSRP3 and WT CMs conditioned media. When compared with KO-CSRP3, culture media derived from WT cells presented higher lactate concentrations either under basal or ISO-stimulated conditions. The higher activity of ketogenic biochemical pathways met the elevated energy requirements of the contractile cells. Both cells are considered phenotypically indistinguishable in the neonatal period of animal lives, but the observed metabolic stress responses of KO-CSRP3 and WT CMs to ISO were different. KO-CSRP3 CMs produced less lactate than WT CMs in both basal and stimulated conditions. Mainly, ISO-stimulated conditions produced evidence for lactate overload within KO-CSRP3 CMs, while WT CMs succeeded to manage the metabolic stress. Thus, 1H-MRS-based metabolomics was suitable to identify early inefficient energetic metabolism in neonatal KO-CSRP3 CMs. These results may reflect an apparent lower lactate transport and consumption, in association with protein catabolism.


Assuntos
Meios de Cultura/química , Proteínas com Domínio LIM/metabolismo , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Animais , Animais Recém-Nascidos , Forma Celular , Análise Discriminante , Isoproterenol/farmacologia , Proteínas com Domínio LIM/deficiência , Análise dos Mínimos Quadrados , Proteínas Musculares/deficiência , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Estatística como Assunto
4.
Auris Nasus Larynx ; 47(1): 98-104, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31272842

RESUMO

OBJECTIVE: Chronic Rhinosinusitis with Nasal Polyps (CRSwNP) is a disease that features a mechanical dysfunction involving chronic inflammation and altered tissue remodeling. In this study, we aim to evaluate the fibroblast morphology and its cellular traction force in primary fibroblasts cell cultures obtained from both healthy individuals (n=7) and patients with CRSwNP (n=8). METHODS: Using a Traction-force Microscopy we analyzed parameters of Force/Tension in fibroblasts cultures in both experimental groups. RESULTS: The analysis of the Projected Area of Cell revealed that fibroblasts derived from nasal mucosa of healthy individuals have an area on average 39.24% larger than the fibroblasts obtained from the nasal polyp tissue. We also observed that the parameters directly related to the force of the cell, Max Cumulative Force and Net Contractile Moment, presented a high Force/Tension per unit of area in the fibroblasts derived from the healthy nasal mucosa (on average 41% and 52.54% higher than the fibroblasts of the nasal polyp respectively). CONCLUSION: Our results demonstrate a cellular mechanism that may be associated with the mechanical dysfunction found in the Nasal Polyp tissue. The weak traction force of nasal polyp-derived fibroblast may, in lower dimensions, impact on the remodeling of nasal mucosa in CRSwNP.


Assuntos
Fenômenos Biomecânicos , Fibroblastos/ultraestrutura , Pólipos Nasais/ultraestrutura , Pseudópodes/ultraestrutura , Estudos de Casos e Controles , Doença Crônica , Feminino , Fibroblastos/patologia , Fibroblastos/fisiologia , Humanos , Masculino , Microscopia de Força Atômica , Microscopia de Contraste de Fase , Pessoa de Meia-Idade , Pólipos Nasais/patologia , Pólipos Nasais/fisiopatologia , Cultura Primária de Células , Pseudópodes/patologia , Rinite/patologia , Sinusite/patologia
5.
Springerplus ; 3: 470, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25221735

RESUMO

Metabolomics has proven an useful tool for systems biology. Here we have used a metabolomics approach to identify conditions in which de novo expression of an established tumor marker, galectin-3, would confer a potential selective advantage for melanoma growth and survival. A murine melanoma cell line (Tm1) that lacks galectin-3 was modified to express it or not (Tm1.G2 and Tm1.N3, respectively). These variant cell line were then exposed to conditions of controlled oxygen tensions and glucose levels. Metabolic profiling of intracellular metabolites of cells exposed to these conditions was obtained in steady state using high resolution (1)H Magnetic Resonance Spectroscopy ((1)H-MRS) and multivariate statistical analysis. The Nuclear Magnetic Resonance (NMR) spectra contained a large number of absorption lines from which we were able to distinguish 20 metabolites, 3 fatty acids and some absorption lines and clusters were not identified. Principal Components Analysis (PCA) allowed for the discrimination of 2 experimental conditions in which expression of the tumor marker galectin-3 may play a significant role, namely exposure of cells to hypoxia under high glucose. Interestingly, under all other experimental conditions tested, the cellular system was quite robust. Our results suggest that the Metabolomics approach can be used to access information about changes in many metabolic pathways induced in tumorigenic cells and to allow the evaluation of their behavior in controlled environmental conditions or selective pressures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...