Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563313

RESUMO

Cancer stem cells (CSCs) play a critical role in the initiation, progression and therapy relapse of many cancers including non-small cell lung cancer (NSCLC). Here, we aimed to address the question of whether the FACS-sorted CSC-like (CD44 + &CD133 +) vs. non-CSC (CD44-/CD133- isogenic subpopulations of p53wt A549 and p53null H1299 cells differ in terms of DNA-damage signaling and the appearance of "dormant" features, including polyploidy, which are early markers (predictors) of their sensitivity to genotoxic stress. X-ray irradiation (IR) at 5 Gy provoked significantly higher levels of the ATR-Chk1/Chk2-pathway activity in CD44-/CD133- and CD133+ subpopulations of H1299 cells compared to the respective subpopulations of A549 cells, which only excited ATR-Chk2 activation as demonstrated by the Multiplex DNA-Damage/Genotoxicity profiling. The CD44+ subpopulations did not demonstrate IR-induced activation of ATR, while significantly augmenting only Chk2 and Chk1/2 in the A549- and H1299-derived cells, respectively. Compared to the A549 cells, all the subpopulations of H1299 cells established an increased IR-induced expression of the γH2AX DNA-repair protein. The CD44-/CD133- and CD133+ subpopulations of the A549 cells revealed IR-induced activation of ATR-p53-p21 cell dormancy signaling-mediated pathway, while none of the CD44+ subpopulations of either cell line possessed any signs of such activity. Our data indicated, for the first time, the transcription factor MITF-FAM3C axis operative in p53-deficient H1299 cells, specifically their CD44+ and CD133+ populations, in response to IR, which warrants further investigation. The p21-mediated quiescence is likely the predominant surviving pathway in CD44-/CD133- and CD133+ populations of A549 cells as indicated by single-cell high-content imaging and analysis of Ki67- and EdU-coupled fluorescence after IR stress. SA-beta-galhistology revealed that cellular-stress-induced premature senescence (SIPS) likely has a significant influence on the temporary dormant state of H1299 cells. For the first time, we demonstrated polyploid giant and/or multinucleated cancer-cell (PGCC/MGCC) fractions mainly featuring the progressively augmenting Ki67low phenotype in CD44+ and CD133+ A549 cells at 24-48 h after IR. In contrast, the Ki67high phenotype enrichment in the same fractions of all the sorted H1299 cells suggested an increase in their cycling/heterochromatin reorganization activity after IR stress. Our results proposed that entering the "quiescence" state rather than p21-mediated SIPS may play a significant role in the survival of p53wt CSC-like NSCLC cells after IR. The results obtained are important for the selection of therapeutic schemes for the treatment of patients with NSCLC, depending on the functioning of the p53 system in tumor cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Dano ao DNA , Neoplasias Pulmonares , Antígeno AC133/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Citocinas/metabolismo , DNA/metabolismo , Células Gigantes/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Antígeno Ki-67/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Poliploidia , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
Life Sci Space Res (Amst) ; 30: 45-54, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34281664

RESUMO

In a study on primates (Macaca mulatta), neurobiological and radiobiological effects have been studied of the synchronous combined action of 7-day antiorthostatic hypokinesia and exposure of the monkeys' head first to γ-rays during 24 h and then to accelerated 12C ions. The neurobiological effects were evaluated by the cognitive functions which model the basic elements of operator activity and the concentration of monoamines and their metabolites in peripheral blood. The radiobiological effects were evaluated by the chromosomal aberration and DNA double-strand break (DSB) yield in peripheral blood lymphocytes. The results of the cognitive function research show that the typological features of the animals' higher nervous activity are the prevailing factor that determines changes in these functions. The monkey of the strong balanced type effectively retained its cognitive functions after the exposures, while in the weak unbalanced type animals these functions were impaired. These changes went along with a decrease in the concentration of monoamines and their metabolites and an increase in the DNA DSB and chromosomal aberration yield in lymphocytes.


Assuntos
Gravitação , Linfócitos , Animais , Cognição , Análise Citogenética , Haplorrinos
3.
Cancers (Basel) ; 13(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071477

RESUMO

Radiotherapy is a primary treatment modality for patients with unresectable non-small cell lung cancer (NSCLC). Tumor heterogeneity still poses the central question of cancer radioresistance, whether the presence of a particular cell population inside a tumor undergoing a selective outgrowth during radio- and chemotherapy give rise to metastasis and tumor recurrence. In this study, we examined the impact of two different multifraction X-ray radiation exposure (MFR) regimens, fraction dose escalation (FDE) in the split course and the conventional hypofractionation (HF), on the phenotypic and molecular signatures of four MFR-surviving NSCLC cell sublines derived from parental A549 (p53 wild-type) and H1299 (p53-null) cells, namely A549FR/A549HR, H1299FR/H1299HR cells. We demonstrate that sublines surviving different MFR regimens in a total dose of 60 Gy significantly diverge in their molecular traits related to irradiation regimen and p53 status. The observed changes regarding radiosensitivity, transformation, proliferation, metabolic activity, partial epithelial-to-mesenchymal transition (EMT) program activation and 1D confined migratory behavior (wound healing). For the first time, we demonstrated that MFR exposure led to the significant decrease in the expression of p63 and p73, the p53-family members, in p53null cells, which correlated with the increase in cell polyploidy. We could not find significant differences in FRA1 expression between parental cells and their sublines that survived after any MFR regimen regardless of p53 status. In our study, the FDE regimen probably causes partial EMT program activation in MFR-survived NSCLC cells through either Vimentin upregulation in p53null or an aberrant N-cadherin upregulation in p53wt cells. The HF regimen likely less influences the EMT activation irrespectively of the p53 status of MFR-survived NSCLC cells. Our data highlight that both MFR regimens caused overall higher cell transformation of p53null H1299FR and H1299HR cells than their parental H1299 cells. Moreover, our results indicate that the FDE regimen raised the radioresistance and transformation of MFR-surviving NSCLC cells irrespectively of their p53 status, though the HF regimen demonstrated a similar effect on p53null NSCLC cells only. Our data once again emphasize that NSCLC therapy approaches should become more personalized according to radiation therapy (RT) regimen, tumor histology, and molecular status of critical proteins.

4.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673439

RESUMO

Ionizing radiation (IR) is used for patients diagnosed with unresectable non-small cell lung cancer (NSCLC). However, radiotherapy remains largely palliative due to the survival of specific cell subpopulations. In the present study, the sublines of NSCLC cells, A549IR (p53wt) and H1299IR (p53null) survived multifraction X-ray radiation exposure (MFR) at a total dose of 60 Gy were investigated three weeks after the MFR course. We compared radiosensitivity (colony formation), expression of epithelial-mesenchymal transition (EMT) markers, migration activity, autophagy, and HR-dependent DNA double-strand break (DSB) repair in the bulk and entire CD44high/CD166high CSC-like populations of both parental and MFR survived NSCLC cells. We demonstrated that the p53 status affected: the pattern of expression of N-cadherin, E-cadherin, Vimentin, witnessing the appearance of EMT-like phenotype of MFR-surviving sublines; 1D confined migratory behavior (wound healing); the capability of an irradiated cell to continue to divide and form a colony of NSCLC cells before and after MFR; influencing the CD44/CD166 expression level in MFR-surviving NSCLC cells after additional single irradiation. Our data further emphasize the impact of p53 status on the decay of γH2AX foci and the associated efficacy of the DSB repair in NSCLC cells survived after MFR. We revealed that Rad51 protein might play a principal role in MFR-surviving of p53 null NSCLC cells promoting DNA DSB repair by homologous recombination (HR) pathway. The proportion of Rad51 + cells elevated in CD44high/CD166high population in MFR-surviving p53wt and p53null sublines and their parental cells. The p53wt ensures DNA-PK-mediated DSB repair for both parental and MFR-surviving cells irrespectively of a subsequent additional single irradiation. Whereas in the absence of p53, a dose-dependent increase of DNA-PK-mediated non-homologous end joining (NHEJ) occurred as an early post-irradiation response is more intensive in the CSC-like population MFR-surviving H1299IR, compared to their parental H1299 cells. Our study strictly observed a significantly higher content of LC3 + cells in the CD44high/CD166high populations of p53wt MFR-surviving cells, which enriched the CSC-like cells in contrast to their p53null counterparts. The additional 2 Gy and 5 Gy X-ray exposure leads to the dose-dependent increase in the proportion of LC3 + cells in CD44high/CD166high population of both parental p53wt and p53null, but not MFR-surviving NSCLC sublines. Our data indicated that autophagy is not necessarily associated with CSC-like cells' radiosensitivity, emphasizing that careful assessment of other milestone processes (such as senescence and autophagy-p53-Zeb1 axis) of primary radiation responses may provide new potential targets modulated for therapeutic benefit through radiosensitizing cancer cells while rescuing normal tissue. Our findings also shed light on the intricate crosstalk between autophagy and the p53-related EMT, by which MFR-surviving cells might obtain an invasive phenotype and metastatic potential.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Quebras de DNA de Cadeia Dupla , Neoplasias Pulmonares/radioterapia , Tolerância a Radiação , Reparo de DNA por Recombinação , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Autofagia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Linhagem Celular Tumoral , Movimento Celular , DNA/metabolismo , Reparo do DNA por Junção de Extremidades , Transição Epitelial-Mesenquimal , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/fisiopatologia , Rad51 Recombinase/metabolismo , Raios X
5.
Int J Mol Sci ; 21(9)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397297

RESUMO

Radiation therapy is one of the main methods of treating patients with non-small cell lung cancer (NSCLC). However, the resistance of tumor cells to exposure remains the main factor that limits successful therapeutic outcome. To study the molecular/cellular mechanisms of increased resistance of NSCLC to ionizing radiation (IR) exposure, we compared A549 (p53 wild-type) and H1299 (p53-deficient) cells, the two NSCLC cell lines. Using fractionated X-ray irradiation of these cells at a total dose of 60 Gy, we obtained the survived populations and named them A549IR and H1299IR, respectively. Further characterization of these cells showed multiple alterations compared to parental NSCLC cells. The additional 2 Gy exposure led to significant changes in the kinetics of γH2AX and phosphorylated ataxia telangiectasia mutated (pATM) foci numbers in A549IR and H1299IR compared to parental NSCLC cells. Whereas A549, A549IR, and H1299 cells demonstrated clear two-component kinetics of DNA double-strand break (DSB) repair, H1299IR showed slower kinetics of γH2AX foci disappearance with the presence of around 50% of the foci 8 h post-IR. The character of H2AX phosphorylation in these cells was pATM-independent. A decrease of residual γH2AX/53BP1 foci number was observed in both A549IR and H1299IR compared to parental cells post-IR at extra doses of 2, 4, and 6 Gy. This process was accompanied with the changes in the proliferation, cell cycle, apoptosis, and the expression of ATP-binding cassette sub-family G member 2 (ABCG2, also designated as CDw338 and the breast cancer resistance protein (BCRP)) protein. Our study provides strong evidence that different DNA repair mechanisms are activated by multifraction radiotherapy (MFR), as well as single-dose IR, and that the enhanced cellular survival after MFR is reliant on both p53 and 53BP1 signaling along with non-homologous end-joining (NHEJ). Our results are of clinical significance as they can guide the choice of the most effective IR regimen by analyzing the expression status of the p53-53BP1 pathway in tumors and thereby maximize therapeutic benefits for the patients while minimizing collateral damage to normal tissue.


Assuntos
Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Proliferação de Células/genética , Reparo do DNA/genética , Neoplasias Pulmonares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos da radiação , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA por Junção de Extremidades/efeitos da radiação , Reparo do DNA/efeitos da radiação , Histonas/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Proteínas de Neoplasias/metabolismo , Proteína Supressora de Tumor p53/genética , Raios X
6.
Aging (Albany NY) ; 9(11): 2397-2410, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29165316

RESUMO

Mechanisms underlying the effects of low-dose ionizing radiation (IR) exposure (10-100 mGy) remain unknown. Here we present a comparative study of early (less than 24h) and delayed (up to 11 post-irradiation passages) radiation effects caused by low (80 mGy) vs intermediate (1000 mGy) dose X-ray exposure in cultured human bone marrow mesenchymal stem cells (MSCs). We show that γН2АХ foci induced by an intermediate dose returned back to the control value by 24 h post-irradiation. In contrast, low-dose irradiation resulted in residual γН2АХ foci still present at 24 h. Notably, these low dose induced residual γН2АХ foci were not co-localized with рАТМ foci and were observed predominantly in the proliferating Кi67 positive (Кi67+) cells. The number of γН2АХ foci and the fraction of nonproliferating (Кi67-) and senescent (SA-ß-gal+) cells measured at passage 11 were increased in cultures exposed to an intermediate dose compared to unirradiated controls. These delayed effects were not seen in the progeny of cells that were irradiated with low-dose X-rays, although such exposure resulted in residual γН2АХ foci in directly irradiated cells. Taken together, our results support the hypothesis that the low-dose IR induced residual γH2AÐ¥ foci do not play a role in delayed irradiation consequences, associated with cellular senescence in cultured MSCs.


Assuntos
Células da Medula Óssea/efeitos da radiação , Proliferação de Células/efeitos da radiação , Senescência Celular/efeitos da radiação , Histonas/metabolismo , Células-Tronco Mesenquimais/efeitos da radiação , Adulto , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Células Cultivadas , Relação Dose-Resposta à Radiação , Humanos , Antígeno Ki-67/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Transdução de Sinais/efeitos da radiação , Fatores de Tempo , Raios X , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...