Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Eng Online ; 10: 98, 2011 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-22074269

RESUMO

BACKGROUND: Body electrical loss analysis (BELA) is a new non-invasive way to assess visceral fat depot size through the use of electromagnetism. BELA has worked well in phantom measurements, but the technology is not yet fully validated. METHODS: Ten volunteers (5 men and 5 women, age: 22-60 y, BMI: 21-30 kg/m(2), waist circumference: 73-108 cm) were measured with the BELA instrument and with cross-sectional magnetic resonance imaging (MRI) at the navel level, navel +5 cm and navel -5 cm. The BELA signal was compared with visceral and subcutaneous fat areas calculated from the MR images. RESULTS: The BELA signal did not correlate with subcutaneous fat area at any level, but correlated significantly with visceral fat area at the navel level and navel +5 cm. The correlation was best at level of navel +5 cm (R(2) = 0.74, P < 0.005, SEE = 29.7 cm(2), LOOCV = 40.1 cm(2)), where SEE is the standard error of the estimate and LOOCV is the root mean squared error of leave-one-out style cross-validation. The average estimate of repeatability of the BELA signal observed through the study was ±9.6 %. One of the volunteers had an exceptionally large amount of visceral fat, which was underestimated by BELA. CONCLUSIONS: The correlation of the BELA signal with the visceral but not with the subcutaneous fat area as measured by MRI is promising. The lack of correlation with the subcutaneous fat suggests that subcutaneous fat has a minor influence to the BELA signal. Further research will show if it is possible to develop a reliable low-cost method for the assessment of visceral fat either using BELA only or combining it, for example, with bioelectrical impedance measurement. The combination of these measurements may help assessing visceral fat in a large scale of body composition. Before large-scale clinical testing and ROC analysis, the initial BELA instrumentation requires improvements. The accuracy of the present equipment is not sufficient for such new technology.


Assuntos
Gordura Intra-Abdominal/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador/instrumentação , Adulto , Composição Corporal , Estudos Transversais , Impedância Elétrica , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Projetos Piloto , Curva ROC , Reprodutibilidade dos Testes , Circunferência da Cintura , Adulto Jovem
2.
Biomed Eng Online ; 9: 65, 2010 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21047441

RESUMO

BACKGROUND: Tomographic imaging has revealed that the body mass index does not give a reliable state of overall fitness. However, high measurement costs make the tomographic imaging unsuitable for large scale studies or repeated individual use. This paper reports an experimental investigation of a new electromagnetic method and its feasibility for assessing body composition. The method is called body electrical loss analysis (BELA). METHODS: The BELA method uses a high-Q parallel resonant circuit to produce a time-varying magnetic field. The Q of the resonator changes when the sample is placed in its coil. This is caused by induced eddy currents in the sample. The new idea in the BELA method is the altered spatial distribution of the electrical losses generated by these currents. The distribution of losses is varied using different excitation frequencies. The feasibility of the method was tested using simplified phantoms. Two of these phantoms were rough estimations of human torso. One had fat in the middle of its volume and saline solution in the outer shell volume. The other had reversed conductivity distributions. The phantoms were placed in the resonator and the change in the losses was measured. Five different excitation frequencies from 100 kHz to 200 kHz were used. RESULTS: The rate of loss as a function of frequency was observed to be approximately three times larger for a phantom with fat in the middle of its volume than for one with fat in its outer shell volume. CONCLUSIONS: At higher frequencies the major signal contribution can be shifted toward outer shell volume. This enables probing the conductivity distribution of the subject by weighting outer structural components. The authors expect that the loss changing rate over frequency can be a potential index for body composition analysis.


Assuntos
Composição Corporal , Condutividade Elétrica , Estudos de Viabilidade , Humanos , Imagens de Fantasmas , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...