Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 14(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38672741

RESUMO

Cyanogenic glucosides are specialized metabolites produced by over 3000 species of higher plants from more than 130 families. The deployment of cyanogenic glucosides is influenced by biotic and abiotic factors in addition to being developmentally regulated, consistent with their roles in plant defense and stress mitigation. Despite their ubiquity, very little is known regarding the molecular mechanisms that regulate their biosynthesis. The biosynthetic pathway of dhurrin, the cyanogenic glucoside found in the important cereal crop sorghum (Sorghum bicolor (L.) Moench), was described over 20 years ago, and yet no direct regulator of the biosynthetic genes has been identified. To isolate regulatory proteins that bind to the promoter region of the key dhurrin biosynthetic gene of sorghum, SbCYP79A1, yeast one-hybrid screens were performed. A bait fragment containing 1204 base pairs of the SbCYP79A1 5' regulatory region was cloned upstream of a reporter gene and introduced into Saccharomyces cerevisiae. Subsequently, the yeast was transformed with library cDNA representing RNA from two different sorghum developmental stages. From these screens, we identified SbGATA22, an LLM domain B-GATA transcription factor that binds to the putative GATA transcription factor binding motifs in the SbCYP79A1 promoter region. Transient assays in Nicotiana benthamiana show that SbGATA22 localizes to the nucleus. The expression of SbGATA22, in comparison with SbCYP79A1 expression and dhurrin concentration, was analyzed over 14 days of sorghum development and in response to nitrogen application, as these conditions are known to affect dhurrin levels. Collectively, these findings suggest that SbGATA22 may act as a negative regulator of SbCYP79A1 expression and provide a preliminary insight into the molecular regulation of dhurrin biosynthesis in sorghum.

2.
Genes (Basel) ; 13(1)2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35052482

RESUMO

Domestication has resulted in a loss of genetic diversity in our major food crops, leading to susceptibility to biotic and abiotic stresses linked with climate change. Crop wild relatives (CWR) may provide a source of novel genes potentially important for re-gaining climate resilience. Sorghum bicolor is an important cereal crop with wild relatives that are endemic to Australia. Sorghum bicolor is cyanogenic, but the cyanogenic status of wild Sorghum species is not well known. In this study, leaves of wild species endemic in Australia are screened for the presence of the cyanogenic glucoside dhurrin. The direct measurement of dhurrin content and the potential for dhurrin-derived HCN release (HCNp) showed that all the tested Australian wild species were essentially phenotypically acyanogenic. The unexpected low dhurrin content may reflect the variable and generally nutrient-poor environments in which they are growing in nature. Genome sequencing of six CWR and PCR amplification of the CYP79A1 gene from additional species showed that a high conservation of key amino acids is required for correct protein function and dhurrin synthesis, pointing to the transcriptional regulation of the cyanogenic phenotype in wild sorghum as previously shown in elite sorghum.


Assuntos
Glicosídeos/metabolismo , Cianeto de Hidrogênio/metabolismo , Nitrilas/metabolismo , Proteínas de Plantas/metabolismo , Sorghum/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Genótipo , Fenótipo , Proteínas de Plantas/genética , Sorghum/genética , Sorghum/crescimento & desenvolvimento
3.
Planta ; 255(2): 51, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35084593

RESUMO

MAIN CONCLUSION: Australian native species of sorghum contain negligible amounts of dhurrin in their leaves and the cyanogenesis process is regulated differently under water-stress in comparison to domesticated sorghum species. Cyanogenesis in forage sorghum is a major concern in agriculture as the leaves of domesticated sorghum are potentially toxic to livestock, especially at times of drought which induces increased production of the cyanogenic glucoside dhurrin. The wild sorghum species endemic to Australia have a negligible content of dhurrin in the above ground tissues and thus represent a potential resource for key agricultural traits like low toxicity. In this study we investigated the differential expression of cyanogenesis related genes in the leaf tissue of the domesticated species Sorghum bicolor and the Australian native wild species Sorghum macrospermum grown in glasshouse-controlled water-stress conditions using RNA-Seq analysis to analyse gene expression. The study identified genes, including those in the cyanogenesis pathway, that were differentially regulated in response to water-stress in domesticated and wild sorghum. In the domesticated sorghum, dhurrin content was significantly higher compared to that in the wild sorghum and increased with stress and decreased with age whereas in wild sorghum the dhurrin content remained negligible. The key genes in dhurrin biosynthesis, CYP79A1, CYP71E1 and UGT85B1, were shown to be highly expressed in S. bicolor. DHR and HNL encoding the dhurrinase and α-hydroxynitrilase catalysing bio-activation of dhurrin were also highly expressed in S. bicolor. Analysis of the differences in expression of cyanogenesis related genes between domesticated and wild sorghum species may allow the use of these genetic resources to produce more acyanogenic varieties in the future.


Assuntos
Sorghum , Austrália , Grão Comestível , Nitrilas , Sorghum/genética , Água
4.
Planta ; 254(6): 119, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34762174

RESUMO

MAIN CONCLUSION: Developmental and organ-specific expression of genes in dhurrin biosynthesis, bio-activation, and recycling offers dynamic metabolic responses optimizing growth and defence responses in Sorghum. Plant defence models evaluate the costs and benefits of resource investments at different stages in the life cycle. Poor understanding of the molecular regulation of defence deployment and remobilization hampers accuracy of the predictions. Cyanogenic glucosides, such as dhurrin are phytoanticipins that release hydrogen cyanide upon bio-activation. In this study, RNA-seq was used to investigate the expression of genes involved in the biosynthesis, bio-activation and recycling of dhurrin in Sorghum bicolor. Genes involved in dhurrin biosynthesis were highly expressed in all young developing vegetative tissues (leaves, leaf sheath, roots, stems), tiller buds and imbibing seeds and showed gene specific peaks of expression in leaves during diel cycles. Genes involved in dhurrin bio-activation were expressed early in organ development with organ-specific expression patterns. Genes involved in recycling were expressed at similar levels in the different organ during development, although post-floral initiation when nutrients are remobilized for grain filling, expression of GSTL1 decreased > tenfold in leaves and NITB2 increased > tenfold in stems. Results are consistent with the establishment of a pre-emptive defence in young tissues and regulated recycling related to organ senescence and increased demand for nitrogen during grain filling. This detailed characterization of the transcriptional regulation of dhurrin biosynthesis, bioactivation and remobilization genes during organ and plant development will aid elucidation of gene regulatory networks and signalling pathways that modulate gene expression and dhurrin levels. In-depth knowledge of dhurrin metabolism could improve the yield, nitrogen use efficiency and stress resilience of Sorghum.


Assuntos
Sorghum , Expressão Gênica , Glicosídeos , Nitrilas , Sorghum/genética
5.
Plant Genome ; 14(3): e20123, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34323394

RESUMO

Sorghum [Sorghum bicolor (L.) Moench] is an important food crop with a diverse gene pool residing in its wild relatives. A total of 15 sorghum accessions from the unexploited wild gene pool of the Sorghum genus, representing the five subgenera, were sequenced, and the complete chloroplast genomes and 99 common single-copy concatenated nuclear genes were assembled. Annotation of the chloroplast genomes identified a total of 81 protein-coding genes, 38 tRNA, and four rRNA genes. The gene content and gene order among the species was identical. A total of 153 nonsynonymous amino acid changes in 40 genes were identified across the species. Phylogenetic analysis of both the whole chloroplast genome and nuclear genes revealed a similar topology with two distinct clades within the genus. The species within the subgenera Eusorghum, Chaetosorghum, and Heterosorghum clustered in one clade, whereas the species within the subgenera Parasorghum and Stiposorghum clustered in a second clade. However, the subgenera Parasorghum and Stiposorghum were not monophyletic, suggesting the need for further research to resolve the relationships within this group. The close relationship between the two monotypic subgenera Chaetosorghum and Heterosorghum suggests that species within these subgenera could be considered as one group. This analysis provides an improved understanding of the genetic relationships within the Sorghum genus and defines diversity in wild sorghum species that may be useful for crop improvement.


Assuntos
Genoma de Cloroplastos , Sorghum , Cloroplastos/genética , Ordem dos Genes , Filogenia , Sorghum/genética
6.
Phytochemistry ; 184: 112645, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33482417

RESUMO

Domestication has narrowed the genetic diversity found in crop wild relatives, potentially reducing plasticity to cope with a changing climate. The tissues of domesticated sorghum (Sorghum bicolor), especially in younger plants, are cyanogenic and potentially toxic. Species of wild sorghum produce lower levels of the cyanogenic glucoside (CNglc) dhurrin than S. bicolor at maturity, but it is not known if this is also the case during germination and early growth. CNglcs play multiple roles in primary and specialised metabolism in domesticated sorghum and other crop plants. In this study, the temporal and spatial distribution of dhurrin in wild and domesticated sorghum at different growth stages was monitored in leaf, sheath and root tissues up to 35 days post germination using S. bicolor and the wild species S. brachypodum and S. macrospermum as the experimental systems. Growth parameters were also measured and allocation of plant total nitrogen (N%) to both dhurrin and nitrate (NO3-) was calculated. Negligible amounts of dhurrin were produced in the leaves of the two wild species compared to S. bicolor. The morphology of the two wild sorghums also differed from S. bicolor, with the greatest differences observed for the more distantly related S. brachypodum. S. bicolor had the highest leaf N% whilst the wild species had significantly higher root N%. Allocation of nitrogen to dhurrin in aboveground tissue was significantly higher in S. bicolor compared to the wild species but did not differ in the roots across the three species. The differences in plant morphology, dhurrin content and re-mobilisation, and nitrate/nitrogen allocation suggest that domestication has affected the functional roles of dhurrin in sorghum.


Assuntos
Sorghum , Grão Comestível , Glucosídeos , Glicosídeos , Nitratos , Nitrilas
7.
Plants (Basel) ; 9(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348715

RESUMO

In plants, the production of secondary metabolites is considered to be at the expense of primary growth. Sorghum produces a cyanogenic glycoside (dhurrin) that is believed to act as its chemical defence. Studies have shown that acyanogenic plants are smaller in size compared to the wildtype. This study aimed to investigate whether the small plant size is due to delayed germination or due to the lack of dhurrin derived nitrogen. A novel plant system consisting of totally cyanide deficient class 1 (tcd1) and adult cyanide deficient 1 (acdc1) mutant lines was employed. The data for germination, plant height and developmental stage during seedling development and final plant reproductive fitness was recorded. The possible role of phytohormones in recovering the wildtype phenotype, especially in developmentally acyanogenic acdc1 line, was also investigated. The data on plant growth have shown that the lack of dhurrin is disadvantageous to growth, but only at the early developmental stage. The tcd1 plants also took longer to mature probably due to delayed flowering. None of the tested hormones were able to recover the wildtype phenotype. We conclude that the generation of dhurrin is advantageous for plant growth, especially at critical growth stages like germinating seed by providing a ready source of reduced nitrogen.

8.
Front Plant Sci ; 10: 1458, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798611

RESUMO

Sorghum bicolor (L.) Moench produces the nitrogen-containing natural product dhurrin that provides chemical defense against herbivores and pathogens via the release of toxic hydrogen cyanide gas. Drought can increase dhurrin in shoot tissues to concentrations toxic to livestock. As dhurrin is also a remobilizable store of reduced nitrogen and plays a role in stress mitigation, reductions in dhurrin may come at a cost to plant growth and stress tolerance. Here, we investigated the response to an extended period of water limitation in a unique EMS-mutant adult cyanide deficient class 1 (acdc1) that has a low dhurrin content in the leaves of mature plants. A mutant sibling line was included to assess the impact of unknown background mutations. Plants were grown under three watering regimes using a gravimetric platform, with growth parameters and dhurrin and nitrate concentrations assessed over four successive harvests. Tissue type was an important determinant of dhurrin and nitrate concentrations, with the response to water limitation differing between above and below ground tissues. Water limitation increased dhurrin concentration in the acdc1 shoots to the same extent as in wild-type plants and no growth advantage or disadvantage between the lines was observed. Lower dhurrin concentrations in the acdc1 leaf tissue when fully watered correlated with an increase in nitrate content in the shoot and roots of the mutant. In targeted breeding efforts to down-regulate dhurrin concentration, parallel effects on the level of stored nitrates should be considered in all vegetative tissues of this important forage crop to avoid potential toxic effects.

9.
Sci Rep ; 8(1): 2691, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426935

RESUMO

Localisation of metabolites in sorghum coleoptiles using Raman hyperspectral imaging analysis was compared in wild type plants and mutants that lack cyanogenic glucosides. This novel method allows high spatial resolution in situ localization by detecting functional groups associated with cyanogenic glucosides using vibrational spectroscopy. Raman hyperspectral imaging revealed that dhurrin was found mainly surrounding epidermal, cortical and vascular tissue, with the greatest amount in cortical tissue. Numerous "hotspots" demonstrated dhurrin to be located within both cell walls and cytoplasm adpressed towards the plasmamembrane and not in the vacuole as previously reported. The high concentration of dhurrin in the outer cortical and epidermal cell layers is consistent with its role in defence against herbivory. This demonstrates the ability of Raman hyperspectral imaging to locate cyanogenic glucosides in intact tissues, avoiding possible perturbations and imprecision that may accompany methods that rely on bulk tissue extraction methods, such as protoplast isolation.


Assuntos
Nitrilas/metabolismo , Sorghum/metabolismo , Análise Espectral Raman/métodos , Ração Animal/análise , Citoplasma/metabolismo , Grão Comestível/metabolismo , Glucosídeos/metabolismo , Glicosídeos/metabolismo , Herbivoria , Cianeto de Hidrogênio/metabolismo , Vacúolos/metabolismo
10.
Funct Plant Biol ; 45(7): 705-718, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32291046

RESUMO

Long-standing growth/defence theories state that the production of defence compounds come at a direct cost to primary metabolism when resources are limited. However, such trade-offs are inherently difficult to quantify. We compared the growth and nitrogen partitioning in wild type Sorghum bicolor (L.) Moench, which contains the cyanogenic glucoside dhurrin, with unique mutants that vary in dhurrin production. The totally cyanide deficient 1 (tcd1) mutants do not synthesise dhurrin at all whereas mutants from the adult cyanide deficient class 1 (acdc1) have decreasing concentrations as plants age. Sorghum lines were grown at three different concentrations of nitrogen. Growth, chemical analysis, physiological measurements and expression of key genes in biosynthesis and turnover were determined for leaves, stems and roots at four developmental stages. Nitrogen supply, ontogeny, tissue type and genotype were all important determinants of tissue nitrate and dhurrin concentration and turnover. The higher growth of acdc1 plants strongly supports a growth/defence trade-off. By contrast, tcd1 plants had slower growth early in development, suggesting that dhurrin synthesis and turnover may be beneficial for early seedling growth rather than being a cost. The relatively small trade-off between nitrate and dhurrin suggests these may be independently regulated.

11.
J Exp Bot ; 67(18): 5403-5413, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27506218

RESUMO

Rising sea levels are threatening agricultural production in coastal regions due to inundation and contamination of groundwater. The development of more salt-tolerant crops is essential. Cassava is an important staple, particularly among poor subsistence farmers. Its tolerance to drought and elevated temperatures make it highly suitable for meeting global food demands in the face of climate change, but its ability to tolerate salt is unknown. Cassava stores nitrogen in the form of cyanogenic glucosides and can cause cyanide poisoning unless correctly processed. Previous research demonstrated that cyanide levels are higher in droughted plants, possibly as a mechanism for increasing resilience to oxidative stress. We determined the tolerance of cassava to salt at two different stages of development, and tested the hypothesis that cyanide toxicity would be higher in salt-stressed plants. Cassava was grown at a range of concentrations of sodium chloride (NaCl) at two growth stages: tuber initiation and tuber expansion. Established plants were able to tolerate 100mM NaCl but in younger plants 40mM was sufficient to retard plant growth severely. Nutrient analysis showed that plants were only able to exclude sodium at low concentrations. The foliar cyanogenic glucoside concentration in young plants increased under moderate salinity stress but was lower in plants grown at high salt. Importantly, there was no significant change in the cyanogenic glucoside concentration in the tubers. We propose that the mechanisms for salinity tolerance are age dependent, and that this can be traced to the relative cost of leaves in young and old plants.


Assuntos
Abastecimento de Alimentos , Manihot/fisiologia , Plantas Tolerantes a Sal/fisiologia , Mudança Climática , Cianetos/metabolismo , Manihot/crescimento & desenvolvimento , Tubérculos/crescimento & desenvolvimento , Tubérculos/fisiologia , Tolerância ao Sal/fisiologia
12.
J Exp Bot ; 67(11): 3367-81, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27126795

RESUMO

Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana.


Assuntos
Regulação da Expressão Gênica de Plantas , Nicotiana/genética , Ornitina Descarboxilase/genética , Proteínas de Plantas/genética , Putrescina/metabolismo , Transcriptoma , Regulação para Baixo , Ornitina Descarboxilase/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Nicotiana/enzimologia , Nicotiana/crescimento & desenvolvimento
13.
Plant Cell Physiol ; 57(2): 373-86, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26493517

RESUMO

Many important food crops produce cyanogenic glucosides as natural defense compounds to protect against herbivory or pathogen attack. It has also been suggested that these nitrogen-based secondary metabolites act as storage reserves of nitrogen. In sorghum, three key genes, CYP79A1, CYP71E1 and UGT85B1, encode two Cytochrome P450s and a glycosyltransferase, respectively, the enzymes essential for synthesis of the cyanogenic glucoside dhurrin. Here, we report the use of targeted induced local lesions in genomes (TILLING) to identify a line with a mutation resulting in a premature stop codon in the N-terminal region of UGT85B1. Plants homozygous for this mutation do not produce dhurrin and are designated tcd2 (totally cyanide deficient 2) mutants. They have reduced vigor, being dwarfed, with poor root development and low fertility. Analysis using liquid chromatography-mass spectrometry (LC-MS) shows that tcd2 mutants accumulate numerous dhurrin pathway-derived metabolites, some of which are similar to those observed in transgenic Arabidopsis expressing the CYP79A1 and CYP71E1 genes. Our results demonstrate that UGT85B1 is essential for formation of dhurrin in sorghum with no co-expressed endogenous UDP-glucosyltransferases able to replace it. The tcd2 mutant suffers from self-intoxication because sorghum does not have a feedback mechanism to inhibit the initial steps of dhurrin biosynthesis when the glucosyltransferase activity required to complete the synthesis of dhurrin is lacking. The LC-MS analyses also revealed the presence of metabolites in the tcd2 mutant which have been suggested to be derived from dhurrin via endogenous pathways for nitrogen recovery, thus indicating which enzymes may be involved in such pathways.


Assuntos
Técnicas de Inativação de Genes , Genes de Plantas , Glucosiltransferases/genética , Nitrilas/metabolismo , Sorghum/genética , Sorghum/metabolismo , Cromatografia Líquida , Glucosiltransferases/metabolismo , Cianeto de Hidrogênio/metabolismo , Espectrometria de Massas , Metaboloma , Metabolômica , Mutação/genética , Nitratos/metabolismo , Nitrilas/química , Nitrogênio/metabolismo , Fenótipo , Plantas Geneticamente Modificadas , Sorghum/enzimologia , Sorghum/crescimento & desenvolvimento
14.
Plant J ; 84(3): 558-73, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26361733

RESUMO

The biosynthetic pathway for the cyanogenic glucoside dhurrin in sorghum has previously been shown to involve the sequential production of (E)- and (Z)-p-hydroxyphenylacetaldoxime. In this study we used microsomes prepared from wild-type and mutant sorghum or transiently transformed Nicotiana benthamiana to demonstrate that CYP79A1 catalyzes conversion of tyrosine to (E)-p-hydroxyphenylacetaldoxime whereas CYP71E1 catalyzes conversion of (E)-p-hydroxyphenylacetaldoxime into the corresponding geometrical Z-isomer as required for its dehydration into a nitrile, the next intermediate in cyanogenic glucoside synthesis. Glucosinolate biosynthesis is also initiated by the action of a CYP79 family enzyme, but the next enzyme involved belongs to the CYP83 family. We demonstrate that CYP83B1 from Arabidopsis thaliana cannot convert the (E)-p-hydroxyphenylacetaldoxime to the (Z)-isomer, which blocks the route towards cyanogenic glucoside synthesis. Instead CYP83B1 catalyzes the conversion of the (E)-p-hydroxyphenylacetaldoxime into an S-alkyl-thiohydroximate with retention of the configuration of the E-oxime intermediate in the final glucosinolate core structure. Numerous microbial plant pathogens are able to detoxify Z-oximes but not E-oximes. The CYP79-derived E-oximes may play an important role in plant defense.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Glucosinolatos/metabolismo , Oximas/metabolismo , Sorghum/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas , Sistema Enzimático do Citocromo P-450/genética , Isomerismo , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sorghum/genética , Nicotiana/genética , Nicotiana/metabolismo , Tirosina/metabolismo
15.
PLoS One ; 8(11): e80035, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24224034

RESUMO

Isolation of gene transcripts from desiccated leaf tissues of the resurrection grass, Sporobolus stapfianus, resulted in the identification of a gene, SDG8i, encoding a Group 1 glycosyltransferase (UGT). Here, we examine the effects of introducing this gene, under control of the CaMV35S promoter, into the model plant Arabidopsis thaliana. Results show that Arabidopsis plants constitutively over-expressing SDG8i exhibit enhanced growth, reduced senescence, cold tolerance and a substantial improvement in protoplasmic drought tolerance. We hypothesise that expression of SDG8i in Arabidopsis negatively affects the bioactivity of metabolite/s that mediate/s environmentally-induced repression of cell division and expansion, both during normal development and in response to stress. The phenotype of transgenic plants over-expressing SDG8i suggests modulation in activities of both growth- and stress-related hormones. Plants overexpressing the UGT show evidence of elevated auxin levels, with the enzyme acting downstream of ABA to reduce drought-induced senescence. Analysis of the in vitro activity of the UGT recombinant protein product demonstrates that SDG8i can glycosylate the synthetic strigolactone analogue GR24, evoking a link with strigolactone-related processes in vivo. The large improvements observed in survival of transgenic Arabidopsis plants under cold-, salt- and drought-stress, as well as the substantial increases in growth rate and seed yield under non-stress conditions, indicates that overexpression of SDG8i in crop plants may provide a novel means of increasing plant productivity.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/metabolismo , Lactonas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/metabolismo , Poaceae/enzimologia , Sementes/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Biomassa , Secas , Regulação da Expressão Gênica de Plantas , Glicosilação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Poaceae/genética , Sementes/enzimologia , Sementes/genética , Sementes/fisiologia
16.
Plant Physiol Biochem ; 73: 83-92, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24080394

RESUMO

Sorghum (Sorghum bicolor L. Moench) is a valuable forage crop in regions with low soil moisture. Sorghum may accumulate high concentrations of the cyanogenic glucoside dhurrin when drought stressed resulting in possible cyanide (HCN) intoxication of grazing animals. In addition, high concentrations of nitrate, also potentially toxic to ruminants, may accumulate during or shortly after periods of drought. Little is known about the degree and duration of drought-stress required to induce dhurrin accumulation, or how changes in dhurrin concentration are influenced by plant size or nitrate metabolism. Given that finely regulating soil moisture under controlled conditions is notoriously difficult, we exposed sorghum plants to varying degrees of osmotic stress by growing them for different lengths of time in hydroponic solutions containing polyethylene glycol (PEG). Plants grown in medium containing 20% PEG (-0.5 MPa) for an extended period had significantly higher concentrations of dhurrin in their shoots but lower dhurrin concentrations in their roots. The total amount of dhurrin in the shoots of plants from the various treatments was not significantly different on a per mass basis, although a greater proportion of shoot N was allocated to dhurrin. Following transfer from medium containing 20% PEG to medium lacking PEG, shoot dhurrin concentrations decreased but nitrate concentrations increased to levels potentially toxic to grazing ruminants. This response is likely due to the resumption of plant growth and root activity, increasing the rate of nitrate uptake. Data presented in this article support a role for cyanogenic glucosides in mitigating oxidative stress.


Assuntos
Adaptação Fisiológica , Secas , Nitratos/metabolismo , Nitrilas/metabolismo , Pressão Osmótica , Estresse Oxidativo , Sorghum/fisiologia , Ração Animal , Animais , Glicosídeos/metabolismo , Herbivoria , Raízes de Plantas , Brotos de Planta , Polietilenoglicóis , Solo , Sorghum/crescimento & desenvolvimento , Sorghum/metabolismo , Água
17.
Plant Biotechnol J ; 10(1): 54-66, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21880107

RESUMO

Cyanogenic glucosides are present in several crop plants and can pose a significant problem for human and animal consumption, because of their ability to release toxic hydrogen cyanide. Sorghum bicolor L. contains the cyanogenic glucoside dhurrin. A qualitative biochemical screen of the M2 population derived from EMS treatment of sorghum seeds, followed by the reverse genetic technique of Targeted Induced Local Lesions in Genomes (TILLING), was employed to identify mutants with altered hydrogen cyanide potential (HCNp). Characterization of these plants identified mutations affecting the function or expression of dhurrin biosynthesis enzymes, and the ability of plants to catabolise dhurrin. The main focus in this study is on acyanogenic or low cyanide releasing lines that contain mutations in CYP79A1, the cytochrome P450 enzyme catalysing the first committed step in dhurrin synthesis. Molecular modelling supports the measured effects on CYP79A1 activity in the mutant lines. Plants harbouring a P414L mutation in CYP79A1 are acyanogenic when homozygous for this mutation and are phenotypically normal, except for slightly slower growth at early seedling stage. Detailed biochemical analyses demonstrate that the enzyme is present in wild-type amounts but is catalytically inactive. Additional mutants capable of producing dhurrin at normal levels in young seedlings but with negligible leaf dhurrin levels in mature plants were also identified. No mutations were detected in the coding sequence of dhurrin biosynthetic genes in this second group of mutants, which are as tall or taller, and leafier than nonmutated lines. These sorghum mutants with reduced or negligible dhurrin content may be ideally suited for forage production.


Assuntos
Ração Animal , Biotecnologia/métodos , Genoma de Planta/genética , Glicosídeos/metabolismo , Mutagênese/genética , Mutação/genética , Sorghum/genética , Animais , Vias Biossintéticas , Western Blotting , Cruzamentos Genéticos , Sistema Enzimático do Citocromo P-450/genética , Metanossulfonato de Etila , Humanos , Cianeto de Hidrogênio/metabolismo , Microssomos/enzimologia , Modelos Moleculares , NADP/metabolismo , Nitrilas/metabolismo , Fenótipo , Sorghum/enzimologia , Homologia Estrutural de Proteína
18.
Funct Plant Biol ; 36(7): 589-599, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32688672

RESUMO

Sporobolus stapfianus Gandoger, one of ~40 known 'anabiotic'grass species (i.e. 'able to regain vital activity from a state of latent life'), is the most versatile tool for research into desiccation tolerance in vegetative grass tissue. Current knowledge on this species is presented, including the features that suit it for investigations into the plant's ability to survive dehydration of its leaf protoplasm. The main contributors to desiccation tolerance in S. stapfianus leaves appear to be: accumulation during dehydration of protectants of membranes and proteins; mechanisms limiting oxidative damage; a retention of protein synthetic activity in late stages of drying that is linked with changes in gene expression and in the proteomic array; and an ability to retain net synthesis of ATP during drying. S. stapfianus exemplifies an advanced stage of an evolutionary trend in desiccation tolerant plants towards increased importance of the dehydration phase (for induction of tolerance, for synthesis of protectants and for proteomic changes).

19.
Funct Plant Biol ; 34(7): 589-600, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32689387

RESUMO

The desiccation tolerant grass Sporobolus stapfianus Gandoger can modulate cellular processes to prevent the imposition of irreversible damage to cellular components by water deficit. The cellular processes conferring this ability are rapidly attenuated by increased water availability. This resurrection plant can quickly restore normal metabolism. Even after loss of more than 95% of its total water content, full rehydration and growth resumption can occur within 24 h. To study the molecular mechanisms of desiccation tolerance in S. stapfianus, a cDNA library constructed from dehydration-stressed leaf tissue, was differentially screened in a manner designed to identify genes with an adaptive role in desiccation tolerance. Further characterisation of four of the genes isolated revealed they are strongly up-regulated by severe dehydration stress and only in desiccation-tolerant tissue, with three of these genes not being expressed at detectable levels in hydrated or dehydrating desiccation-sensitive tissue. The nature of the putative proteins encoded by these genes are suggestive of molecular processes associated with protecting the plant against damage caused by desiccation and include a novel LEA-like protein, and a pore-like protein that may play an important role in peroxisome function during drought stress. A third gene product has similarity to a nuclear-localised protein implicated in chromatin remodelling. In addition, a UDPglucose glucosyltransferase gene has been identified that may play a role in controlling the bioactivity of plant hormones or secondary metabolites during drought stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...