Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Polymers (Basel) ; 14(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35335472

RESUMO

L_FMFRP is an architectural fiber composite surface element with an airy internal structure and variable section. This architectured material is the product of an alternative design and fabrication process that integrates fabric materiality, suggesting moldless shaping of the material through pleating and layering. Initial study of the mechanical properties of the element showed a structural behavior that would satisfy the requirement for schematic architectural cladding configurations, indicating a unique hysteretic behavior of the material. This paper further investigates the hysteretic capacities of L-FMFRP, examining the behavior under repeated loading and the effect of its internal material architecture. Parallels to entangled materials are suggested for a deeper understanding of the phenomenon, and the potential future application as an energy-absorbent material for façade cladding is outlined.

3.
Adv Sci (Weinh) ; 8(24): e2102171, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34716680

RESUMO

Self-morphing of thin plates could greatly impact the life if used in architectural context. Yet, so far, its realizations are limited to small-scale structures made of model materials. Here, new fabrication techniques are developed that turn two conventional construction materials-clay and fiber composites (FRP)-into smart, self-morphing materials, compatible with architectural needs. Controlled experiments verify the quantitative connection between the prescribed small-scale material structure and the global 3D surface, as predicted by the theory of incompatible elastic sheets. Scaling up of desired structures is demonstrated, including a method that copes with self-weight effects. Finally, a method for the construction of FRP surfaces with complex curvature distribution is presented, together with a software interface that allows the computation of the 3D surface for a given fiber pattern (the forward problem), as well as the fiber distribution required for a desired 3D shape (the inverse problem). This work shows the feasibility of large-scale self-morphing surfaces for architecture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...