Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 75(5): 1465-1478, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37952108

RESUMO

Powdery mildew fungi are obligate biotrophic pathogens that only invade plant epidermal cells. There are two epidermal surfaces in every plant leaf: the adaxial (upper) side and the abaxial (lower) side. While both leaf surfaces can be susceptible to adapted powdery mildew fungi in many plant species, there have been observations of leaf abaxial immunity in some plant species including Arabidopsis. The genetic basis of such leaf abaxial immunity remains unknown. In this study, we tested a series of Arabidopsis mutants defective in one or more known defense pathways with the adapted powdery mildew isolate Golovinomyces cichoracearum UCSC1. We found that leaf abaxial immunity was significantly compromised in mutants impaired for both the EDS1/PAD4- and PEN2/PEN3-dependent defenses. Consistently, expression of EDS1-yellow fluorescent protein and PEN2-green fluorescent protein fusions from their respective native promoters in the respective eds1-2 and pen2-1 mutant backgrounds was higher in the abaxial epidermal cells than in the adaxial epidermal cells. Altogether, our results indicate that leaf abaxial immunity against powdery mildew in Arabidopsis is at least partially due to enhanced EDS1/PAD4- and PEN2/PEN3-dependent defenses. Such transcriptionally pre-programmed defense mechanisms may underlie leaf abaxial immunity in other plant species such as hemp and may be exploited for engineering adaxial immunity against powdery mildew fungi in crop plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regiões Promotoras Genéticas , Folhas de Planta/metabolismo , Mecanismos de Defesa , Doenças das Plantas/microbiologia
2.
J Vis Exp ; (169)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33779619

RESUMO

Reducing crop losses due to fungal diseases requires improved understanding of the mechanisms governing plant immunity and fungal pathogenesis, which in turn requires accurate determination of disease phenotypes of plants upon infection with a particular fungal pathogen. However, accurate disease phenotyping with unculturable biotrophic fungal pathogens such as powdery mildew is not easy to achieve and can be a rate-limiting step of a research project. Here, we have developed a safe, efficient, and easy-to-operate disease phenotyping system using the Arabidopsis-powdery mildew interaction as an example. This system mainly consists of three components: (i) a wooden inoculation box fitted with a removable lid mounted with a stainless steel or nylon mesh of ~50 µm pores for inoculating a flat of plants with fungal spores, (ii) a transparent plastic chamber with a small front opening for minimizing spore escape while conducting inoculation inside, and (iii) a spore-dislodging and distribution method for even and effective inoculation. The protocols described here include the steps and parameters for making the inoculation box and the plastic chamber at a low cost, and a video demonstration of how to use the system to enable even inoculation with powdery mildew spores, thereby improving accuracy and reproducibility of disease phenotyping.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...