Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Syst Biol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38756097

RESUMO

Migration independently evolved numerous times in animals, with a myriad of ecological and evolutionary implications. In fishes, perhaps the most extreme form of migration is diadromy, the migration between marine and freshwater environments. Key and longstanding questions are: how many times has diadromy evolved in fishes, how frequently do diadromous clades give rise to non-diadromous species, and does diadromy influence lineage diversification rates? Many diadromous fishes have large geographic ranges with constituent populations that use isolated freshwater habitats. This may limit gene flow among some populations, increasing the likelihood of speciation in diadromous lineages relative to non-diadromous lineages. Alternatively, diadromy may reduce lineage diversification rates if migration is associated with enhanced dispersal capacity that facilitates gene flow within and between populations. Clupeiformes (herrings, sardines, shads and anchovies) is a model clade for testing hypotheses about the evolution of diadromy because it includes an exceptionally high proportion of diadromous species and several independent evolutionary origins of diadromy. However, relationships among major clupeiform lineages remain unresolved and existing phylogenies sparsely sampled diadromous species, limiting the resolution of phylogenetically-informed statistical analyses. We assembled a phylogenomic dataset and used multi-species coalescent and concatenation-based approaches to generate the most comprehensive, highly-resolved clupeiform phylogeny to date, clarifying associations among several major clades and identifying recalcitrant relationships needing further examination. We determined that variation in rates of sequence evolution (heterotachy) and base-composition (non-stationarity) had little impact on our results. Using this phylogeny, we characterized evolutionary patterns of diadromy and tested for differences in lineage diversification rates between diadromous, marine, and freshwater lineages. We identified thirteen transitions to diadromy, all during the Cenozoic Era (ten origins of anadromy, two origins of catadromy, and one origin of amphidromy), and seven losses of diadromy. Two diadromous lineages rapidly generated non-diadromous species, demonstrating that diadromy is not an evolutionary dead-end. We discovered considerably faster transition rates out of diadromy than to diadromy. The largest lineage diversification rate increase in Clupeiformes was associated with a transition to diadromy, but we uncovered little statistical support for categorically faster lineage diversification rates in diadromous versus non-diadromous fishes. We propose that diadromy may increase the potential for accelerated lineage diversification, particularly in species that migrate long distances. However, this potential may only be realized in certain biogeographic contexts, such as when diadromy allows access to ecosystems in which there is limited competition from incumbent species.

2.
Am Nat ; 202(6): 830-850, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38033182

RESUMO

AbstractMigration can have a profound influence on rates and patterns of phenotypic evolution. Diadromy is the migration between marine and freshwater habitats for feeding and reproduction that can require individuals to travel tens to thousands of kilometers. The high energetic demands of diadromy are predicted to select for ecomorphological traits that maximize swimming and locomotor efficiency. Intraspecific studies have shown repeated instances of divergence among diadromous and nondiadromous populations in locomotor and foraging traits, which suggests that at a macroevolutionary scale diadromous lineages may experience convergent evolution onto one or multiple adaptive optima. We tested for differences in rates and patterns of phenotypic evolution among diadromous and nondiadromous lineages in Clupeiformes, a clade that has evolved diadromy more than 10 times. Our results show that diadromous clupeiforms show convergent evolution for some locomotor traits and faster rates of evolution, which we propose are adaptive responses to the locomotor demands of migration. We also find evidence that diadromous lineages show convergence into multiple regions of multivariate trait space and suggest that these respective trait spaces are associated with differences in migration and trophic ecology. However, not all locomotor traits and no trophic traits show evidence of convergence or elevated rates of evolution associated with diadromy. Our results show that long-distance migration influences the tempo and patterns of phenotypic evolution at macroevolutionary scales, but there is not a single diadromous syndrome.


Assuntos
Ecossistema , Peixes , Humanos , Animais , Filogenia , Peixes/fisiologia , Água Doce , Ecologia , Evolução Biológica
3.
Integr Comp Biol ; 62(2): 406-423, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35675320

RESUMO

Evolutionary transitions between marine and freshwater ecosystems have occurred repeatedly throughout the phylogenetic history of fishes. The theory of ecological opportunity predicts that lineages that colonize species-poor regions will have greater potential for phenotypic diversification than lineages invading species-rich regions. Thus, transitions between marine and freshwaters may promote phenotypic diversification in trans-marine/freshwater fish clades. We used phylogenetic comparative methods to analyze body size data in nine major fish clades that have crossed the marine/freshwater boundary. We explored how habitat transitions, ecological opportunity, and community interactions influenced patterns of phenotypic diversity. Our analyses indicated that transitions between marine and freshwater habitats did not drive body size evolution, and there are few differences in body size between marine and freshwater lineages. We found that body size disparity in freshwater lineages is not correlated with the number of independent transitions to freshwaters. We found a positive correlation between body size disparity and overall species richness of a given area, and a negative correlation between body size disparity and diversity of closely related species. Our results indicate that the diversity of incumbent freshwater species does not restrict phenotypic diversification, but the diversity of closely related taxa can limit body size diversification. Ecological opportunity arising from colonization of novel habitats does not seem to have a major effect in the trajectory of body size evolution in trans-marine/freshwater clades. Moreover, competition with closely related taxa in freshwaters has a greater effect than competition with distantly related incumbent species.


Assuntos
Ecossistema , Água Doce , Animais , Peixes/genética , Filogenia
4.
Evol Appl ; 13(10): 2630-2645, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33294013

RESUMO

Species introductions provide opportunities to quantify rates and patterns of evolutionary change in response to novel environments. Alewives (Alosa pseudoharengus) are native to the East Coast of North America where they ascend coastal rivers to spawn in lakes and then return to the ocean. Some populations have become landlocked within the last 350 years and diverged phenotypically from their ancestral marine population. More recently, alewives were introduced to the Laurentian Great Lakes (~150 years ago), but these populations have not been compared to East Coast anadromous and landlocked populations. We quantified 95 years of evolution in foraging traits and overall body shape of Great Lakes alewives and compared patterns of phenotypic evolution of Great Lakes alewives to East Coast anadromous and landlocked populations. Our results suggest that gill raker spacing in Great Lakes alewives has evolved in a dynamic pattern that is consistent with responses to strong but intermittent eco-evolutionary feedbacks with zooplankton size. Following their initial colonization of Lakes Ontario and Michigan, dense alewife populations likely depleted large-bodied zooplankton, which drove a decrease in alewife gill raker spacing. However, the introduction of large, non-native zooplankton to the Great Lakes in later decades resulted in an increase in gill raker spacing, and present-day Great Lakes alewives have gill raker spacing patterns that are similar to the ancestral East Coast anadromous population. Conversely, contemporary Great Lakes alewife populations possess a gape width consistent with East Coast landlocked populations. Body shape showed remarkable parallel evolution with East Coast landlocked populations, likely due to a shared response to the loss of long-distance movement or migrations. Our results suggest the colonization of a new environment and cessation of migration can result in rapid parallel evolution in some traits, but contingency also plays a role, and a dynamic ecosystem can also yield novel trait combinations.

5.
Ecol Evol ; 10(8): 3769-3783, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32313635

RESUMO

Habitat occupancy can have a profound influence on macroevolutionary dynamics, and a switch in major habitat type may alter the evolutionary trajectory of a lineage. In this study, we investigate how evolutionary transitions between marine and freshwater habitats affect macroevolutionary adaptive landscapes, using needlefishes (Belonidae) as a model system. We examined the evolution of body shape and size in marine and freshwater needlefishes and tested for phenotypic change in response to transitions between habitats. Using micro-computed tomographic (µCT) scanning and geometric morphometrics, we quantified body shape, size, and vertebral counts of 31 belonid species. We then examined the pattern and tempo of body shape and size evolution using phylogenetic comparative methods. Our results show that transitions from marine to freshwater habitats have altered the adaptive landscape for needlefishes and expanded morphospace relative to marine taxa. We provide further evidence that freshwater taxa attain reduced sizes either through dwarfism (as inferred from axial skeletal reduction) or through developmental truncation (as inferred from axial skeletal loss). We propose that transitions to freshwater habitats produce morphological novelty in response to novel prey resources and changes in locomotor demands. We find that repeated invasions of different habitats have prompted predictable changes in morphology.

6.
Proc Biol Sci ; 287(1918): 20192615, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31937226

RESUMO

Migratory animals respond to environmental heterogeneity by predictably moving long distances in their lifetime. Migration has evolved repeatedly in animals, and many adaptations are found across the tree of life that increase migration efficiency. Life-history theory predicts that migratory species should evolve a larger body size than non-migratory species, and some empirical studies have shown this pattern. A recent study analysed the evolution of body size between diadromous and non-diadromous shads, herrings, anchovies and allies, finding that species evolved larger body sizes when adapting to a diadromous lifestyle. It remains unknown whether different fish clades adapt to migration similarly. We used an adaptive landscape framework to explore body size evolution for over 4500 migratory and non-migratory species of ray-finned fishes. By fitting models of macroevolution, we show that migratory species are evolving towards a body size that is larger than non-migratory species. Furthermore, we find that migratory lineages evolve towards their optimal body size more rapidly than non-migratory lineages, indicating body size is a key adaption for migratory fishes. Our results show, for the first time, that the largest vertebrate radiation on the planet exhibited strong evolutionary determinism when adapting to a migratory lifestyle.


Assuntos
Migração Animal , Evolução Biológica , Peixes/fisiologia , Animais , Tamanho Corporal , Rajidae
7.
J Fish Biol ; 96(1): 194-201, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31729024

RESUMO

We explored the macroevolutionary dynamics of miniaturisation in New World anchovies by integrating a time-calibrated phylogeny, geometric morphometrics and phylogenetic comparative methods. We found that the paedomorphic species Amazonsprattus scintilla occupies a novel region of shape space, while the dwarf species Anchoviella manamensis has an overall shape consistent with other anchovies. We found that miniaturisation did not increase overall clade disparity in size or shape beyond the expectations of Brownian motion, nor were there differences in rates of size or shape evolution among clades. Overall, our study shows that while the mode of miniaturisation influences shape evolution, the phenotypic novelty produced by the evolution of miniaturisation did not seem to alter macroevolutionary dynamics.


Assuntos
Peixes/anatomia & histologia , Miniaturização , Animais , Evolução Biológica , Tamanho Corporal/genética , Peixes/classificação , Peixes/genética , Filogenia
8.
Mol Phylogenet Evol ; 124: 151-161, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29551522

RESUMO

Biotic and abiotic forces govern the evolution of trophic niches, which profoundly impact ecological and evolutionary processes and aspects of species biology. Herbivory is a particularly interesting trophic niche because there are theorized trade-offs associated with diets comprised of low quality food that might prevent the evolution of herbivory in certain environments. Herbivory has also been identified as a potential evolutionary "dead-end" that hinders subsequent trophic diversification. For this study we investigated trophic niche evolution in Clupeoidei (anchovies, sardines, herrings, and their relatives) and tested the hypotheses that herbivory is negatively correlated with salinity and latitude using a novel, time-calibrated molecular phylogeny, trophic guilds delimited using diet data and cluster analysis, and standard and phylogenetically-informed statistical methods. We identified eight clupeoid trophic guilds: molluscivore, terrestrial invertivore, phytoplanktivore, macroalgivore, detritivore, piscivore, crustacivore, and zooplanktivore. Standard statistical methods found a significant negative correlation between latitude and the proportion of herbivorous clupeoids (herbivorous clupeoid species/total clupeoid species), but no significant difference in the proportion of herbivorous clupeoids between freshwater and marine environments. Phylogenetic least squares regression did not identify significant negative correlations between latitude and herbivory or salinity and herbivory. In clupeoids there were five evolutionary transitions from non-herbivore to herbivore guilds and no transitions from herbivore to non-herbivore guilds. There were no transitions to zooplanktivore, the most common guild, but it gave rise to all trophic guilds, except algivore, at least once. Transitions to herbivory comprised a significantly greater proportion of diet transitions in tropical and subtropical (<35°) relative to temperate areas (>35°). Our findings suggest cold temperatures may constrain the evolution of herbivory and that herbivory might act as an evolutionary "dead-end" that hinders subsequent trophic diversification, while zooplanktivory acts as an evolutionary "cradle" that facilitates trophic diversification.


Assuntos
Ecossistema , Peixes/fisiologia , Herbivoria/fisiologia , Filogenia , Animais , Calibragem , Dieta , Especificidade da Espécie , Fatores de Tempo
9.
Neotrop. ichthyol ; 16(3): [e180095], out. 2018. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-963814

RESUMO

Clupeiformes (herring, sardines, shad, anchovies and allies) are a globally distributed clade with nearly 400 marine, freshwater, and diadromous species. Although best known as filter feeding fishes that form large schools, this group occupies a diverse array of trophic guilds and habitats. Theory suggests that species richness in clades is modulated by ecological limits, which results in diversity-dependent clade growth, a pattern that most clades exhibit. As a trans-marine/freshwater clade that has undergone repeated transitions between marine and freshwaters, Clupeiformes are an excellent system for investigating the interplay between ecological diversity and macroevolutionary dynamics. In this study we review the systematics of Clupeiformes and explore discordance in phylogenetic relationships and divergence times between mitochondrial and nuclear loci. We then use comparative methods to test whether ecological limits regulate diversity in Clupeiformes. We find discordance in phylogenetic relationships at various taxonomic scales, but also considerable agreement between genomes. Our results suggest that trans-marine/freshwater clades are able to circumvent ecological limits on clade growth at regional, but not on local scales. Our study demonstrates that phylogenies are a critical link between ecology and macroevolutionary dynamics, and suggests habitat transitions can play a key role in shaping diversity patterns, particularly in the neotropics.(AU)


Clupeiformes (apapás, sardinhas e manjubas) são um clado globalmente distribuído com quase 400 espécies marinhas, de água doce e diádromas. Embora mais conhecida pela presença de peixes filtradores formadores de cardumes, este grupo apresenta uma diversidade de guilda e habitats tróficos. A teoria sugere que a riqueza de espécies em clados é modulada por limites ecológicos, o que resulta em um crescimento dependente da diversidade, um padrão que a maioria dos clados exibem. Como um clado que sofreu repetidas transições entre águas marinhas e as águas doces, os clupeiformes são um excelente grupo para investigar a interação entre a diversidade ecológica e a dinâmica macroevolutiva. Neste estudo, revisamos a sistemática de Clupeiformes e exploramos a discordância nas relações filogenéticas e os tempos de divergência entre loci mitocondriais e nucleares. Em seguida, utilizamos métodos comparativos para testar se os limites ecológicos regulam a diversidade em Clupeiformes. Encontramos discordância nas relações filogenéticas em várias escalas taxonômicas, mas também considerável concordância entre os genomas. Nossos resultados sugerem que clados que sofreram sucessivas transições entre águas marinhas e águas doces são capazes de contornar os limites ecológicos do crescimento durante a sua diversificação em escala global, mas não localmente. Nosso estudo demonstra que as filogenias apresentam um vínculo crítico entre a ecologia e a dinâmica macroevolutiva, e sugere que as transições de hábitats podem desempenhar um papel fundamental na modelagem dos padrões de diversidade, particularmente no neotrópico.(AU)


Assuntos
Biodiversidade , Peixes/classificação , Modelos Teóricos
10.
Mol Phylogenet Evol ; 86: 8-23, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25769409

RESUMO

Phylogenetic relationships among families within the order Atheriniformes have been difficult to resolve on the basis of morphological evidence. Molecular studies so far have been fragmentary and based on a small number taxa and loci. In this study, we provide a new phylogenetic hypothesis based on sequence data collected for eight molecular markers for a representative sample of 103 atheriniform species, covering 2/3 of the genera in this order. The phylogeny is calibrated with six carefully chosen fossil taxa to provide an explicit timeframe for the diversification of this group. Our results support the subdivision of Atheriniformes into two suborders (Atherinopsoidei and Atherinoidei), the nesting of Notocheirinae within Atherinopsidae, and the monophyly of tribe Menidiini, among others. We propose taxonomic changes for Atherinopsoidei, but a few weakly supported nodes in our phylogeny suggests that further study is necessary to support a revised taxonomy of Atherinoidei. The time-calibrated phylogeny was used to infer ancestral habitat reconstructions to explain the current distribution of marine and freshwater taxa. Based on these results, the current distribution of Atheriniformes is likely due to widespread marine dispersal along the margins of continents, infrequent trans-oceanic dispersal, and repeated invasion of freshwater habitats. This conclusion is supported by post-Gondwanan divergence times among families within the order, and a high probability of a marine ancestral habitat.


Assuntos
Evolução Biológica , Fósseis , Filogenia , Smegmamorpha/classificação , Animais , Teorema de Bayes , Funções Verossimilhança , Modelos Genéticos , Análise de Sequência de DNA
11.
PLoS One ; 9(6): e98430, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24887453

RESUMO

Explaining the disparity of species richness across the tree of life is one of the great challenges in evolutionary biology. Some lineages are exceptionally species rich, while others are relatively species poor. One explanation for heterogeneity among clade richness is that older clades are more species rich because they have had more time to accrue diversity than younger clades. Alternatively, disparity in species richness may be due to among-lineage diversification rate variation. Here we investigate diversification in water scavenger beetles (Hydrophilidae), which vary in species richness among major lineages by as much as 20 fold. Using a time-calibrated phylogeny and comparative methods, we test for a relationship between clade age and species richness and for shifts in diversification rate in hydrophilids. We detected a single diversification rate increase in Megasternini, a relatively young and species rich clade whose diversity might be explained by the stunning diversity of ecological niches occupied by this clade. We find that Amphiopini, an old clade, is significantly more species poor than expected, possibly due to its restricted geographic range. The remaining lineages show a correlation between species richness and clade age, suggesting that both clade age and variation in diversification rates explain the disparity in species richness in hydrophilids. We find little evidence that transitions between aquatic, semiaquatic, and terrestrial habitats are linked to shifts in diversification rates.


Assuntos
Biodiversidade , Besouros/classificação , Animais , Filogenia
12.
Proc Biol Sci ; 281(1778): 20132081, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24430843

RESUMO

One of the most remarkable types of migration found in animals is diadromy, a life-history behaviour in which individuals move between oceans and freshwater habitats for feeding and reproduction. Diadromous fishes include iconic species such as salmon, eels and shad, and have long fascinated biologists because they undergo extraordinary physiological and behavioural modifications to survive in very different habitats. However, the evolutionary origins of diadromy remain poorly understood. Here, we examine the widely accepted productivity hypothesis, which states that differences in productivity between marine and freshwater biomes determine the origins of the different modes of diadromy. Specifically, the productivity hypothesis predicts that anadromous lineages should evolve in temperate areas from freshwater ancestors and catadromous lineages should evolve in tropical areas from marine ancestors. To test this, we generated a time-calibrated phylogeny for Clupeiformes (herrings, anchovies, sardines and allies), an ecologically and economically important group that includes high diversity of diadromous species. Our results do not support the productivity hypothesis. Instead we find that the different modes of diadromy do not have predictable ancestry based on latitude, and that predation, competition and geological history may be at least as important as productivity in determining the origins of diadromy.


Assuntos
Migração Animal , Peixes/fisiologia , Filogenia , Animais , Peixes/crescimento & desenvolvimento , Oceanos e Mares , Rios , Comportamento Sexual Animal
13.
Evolution ; 67(7): 2040-57, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23815658

RESUMO

Freshwater habitats make up only ∼0.01% of available aquatic habitat and yet harbor 40% of all fish species, whereas marine habitats comprise >99% of available aquatic habitat and have only 60% of fish species. One possible explanation for this pattern is that diversification rates are higher in freshwater habitats than in marine habitats. We investigated diversification in marine and freshwater lineages in the New World silverside fish clade Menidiinae (Teleostei, Atherinopsidae). Using a time-calibrated phylogeny and a state-dependent speciation-extinction framework, we determined the frequency and timing of habitat transitions in Menidiinae and tested for differences in diversification parameters between marine and freshwater lineages. We found that Menidiinae is an ancestrally marine lineage that independently colonized freshwater habitats four times followed by three reversals to the marine environment. Our state-dependent diversification analyses showed that freshwater lineages have higher speciation and extinction rates than marine lineages. Net diversification rates were higher (but not significant) in freshwater than marine environments. The marine lineage-through time (LTT) plot shows constant accumulation, suggesting that ecological limits to clade growth have not slowed diversification in marine lineages. Freshwater lineages exhibited an upturn near the recent in their LTT plot, which is consistent with our estimates of high background extinction rates. All sequence data are currently being archived on Genbank and phylogenetic trees archived on Treebase.


Assuntos
Água Doce , Filogenia , Smegmamorpha/classificação , Smegmamorpha/genética , Animais , Extinção Biológica , Especiação Genética
14.
J Evol Biol ; 25(4): 701-15, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22300535

RESUMO

Evolutionary transitions between marine and freshwater biomes are relatively rare events, yielding a widespread pattern of biome conservatism among aquatic organisms. We investigated biome transitions in anchovies (Engraulidae), a globally distributed clade of economically important fishes. Most anchovy species are near-shore marine fishes, but several exclusively freshwater species are known from tropical rivers of South America and were previously thought to be the product of six or more independent freshwater invasions. We generated a comprehensive molecular phylogeny for Engraulidae, including representatives from 15 of 17 currently recognized genera. Our data support previous hypotheses of higher-level relationships within Engraulidae, but show that most New World genera are not monophyletic and in need of revision. Ancestral character reconstruction reveals that New World freshwater anchovies are the product of a single marine to freshwater transition, supporting a pattern of biome conservatism. We argue that competition is the principal mechanism that regulates aquatic biome transitions on a continental scale.


Assuntos
Peixes/classificação , Peixes/genética , Animais , Hidrobiologia , Filogeografia
15.
Mol Phylogenet Evol ; 62(3): 1025-30, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22178919

RESUMO

Phylogenetic relationships among families of Atheriniformes have long been problematic. The affinities of one of the most enigmatic lineages, surf silversides (Notocheiridae), have proven particularly elusive due to this taxon's unique morphology and rarity in museum collections. In this study, we use mitochondrial and nuclear sequence data to generate a phylogeny for seven of the eight families of Atheriniformes. Our results reveal that four families within Atheriniformes (Atherinopsidae, Notocheiridae, Atherinidae, Melanotaeniidae) are not monophyletic. Most notably, Notocheiridae is polyphyletic, with Notocheirus hubbsi nested within New World silversides (Atherinopsidae), while members of Iso are sister to all other Old World Atheriniforms. These data suggest that the unique morphology of Notocheirus and Iso is a result of adaptive convergent evolution to the high-energy surf habitat where these species live.


Assuntos
Filogenia , Smegmamorpha/classificação , Smegmamorpha/genética , Animais , Citocromos b/genética , Evolução Molecular , Genes RAG-1 , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...