Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 58(15): 10346-10356, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31334640

RESUMO

A comparison of chlorido-gallium functionalized alkoxides as precursors for aerosol-assisted chemical vapor deposition (AACVD) was carried out. Variable-temperature (VT)-NMR studies were used to probe the fluxional behavior of these alkoxides in solution, and hence their utility as precursors. The synthesis involved the initial isolation of the dimer [GaCl(NMe2)2]2 via a salt metathesis route from GaCl3 and 2 equiv of LiNMe2. This dimer was then reacted with 4 equiv of HOCH2CH2CH2NEt2, resulting in the formation of Ga[µ-(OCH2CH2CH2NEt2)2GaCl2]3 (1). Mass spectrometry and VT-NMR confirmed the oligomeric structure of 1. Tuning of the ligand properties, namely, the chain length and substituents on N, resulted in formation of the monomers [GaCl(OR)2] (R = CH2CH2NEt2, (2); CH2CH2CH2NMe2, (3)). VT-NMR studies, supported by density functional theory calculations, confirmed that the ligands in both 2 and 3 possess a hemilabile coordination to the gallium center, owing to either a shorter carbon backbone (2) or less steric hindrance (3). Both 2 and 3 were selected for use as precursors for AACVD: deposition at 450 °C gave thin films of amorphous Ga2O3, which were subsequently annealed at 1000 °C to afford crystalline Ga2O3 material. The films were fully characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, UV-visible spectroscopy, and energy dispersive X-ray analysis.

2.
Angew Chem Int Ed Engl ; 57(40): 13066-13070, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30105766

RESUMO

Inorganic chemical cells (iCHELLs) are compartment structures consisting of polyoxometalates (POMs) and cations, offering structured and confined reaction spaces bounded by membranes. We have constructed a system capable of efficient anisotropic and hierarchical photo-induced electron transfer across the iCHELL membrane. Mimicking photosynthesis, our system uses proton gradients between the compartment and the bulk to drive efficient conversion of light into chemical energy, producing hydrogen upon irradiation. This illustrates the power of the iCHELL approach for catalysis, where the structure, compartmentalisation and variation in possible components could be utilised to approach a wide range of reactions.

3.
J Am Chem Soc ; 138(21): 6707-10, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27159121

RESUMO

Solar-to-hydrogen photoelectrochemical cells (PECs) have been proposed as a means of converting sunlight into H2 fuel. However, in traditional PECs, the oxygen evolution reaction and the hydrogen evolution reaction are coupled, and so the rate of both of these is limited by the photocurrents that can be generated from the solar flux. This in turn leads to slow rates of gas evolution that favor crossover of H2 into the O2 stream and vice versa, even through ostensibly impermeable membranes such as Nafion. Herein, we show that the use of the electron-coupled-proton buffer (ECPB) H3PMo12O40 allows solar-driven O2 evolution from water to proceed at rates of over 1 mA cm(-2) on WO3 photoanodes without the need for any additional electrochemical bias. No H2 is produced in the PEC, and instead H3PMo12O40 is reduced to H5PMo12O40. If the reduced ECPB is subjected to a separate electrochemical reoxidation, then H2 is produced with full overall Faradaic efficiency.

4.
J Am Chem Soc ; 136(8): 3304-11, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24499042

RESUMO

Typical catalysts for the electrolysis of water at low pH are based on precious metals (Pt for the cathode and IrO2 or RuO2 for the anode). However, these metals are rare and expensive, and hence lower cost and more abundant catalysts are needed if electrolytically produced hydrogen is to become more widely available. Herein, we show that electrode-film formation from aqueous solutions of first row transition metal ions at pH 1.6 can be induced under the action of an appropriate cell bias and that in the case of cobalt voltages across the cell in excess of 2 V lead to the formation of a pair of catalysts that show functional stability for oxygen evolution and proton reduction for over 24 h. We show that these films are metastable and that if the circuit is opened, they redissolve into the electrolyte bath with concomitant O2 and H2 evolution, such that the overall Faradaic efficiency for charge into the system versus amounts of gases obtained approaches unity for both O2 and H2. This work highlights the ability of first row transition metals to mediate heterogeneous electrolytic water splitting in acidic media by exploiting, rather than trying to avoid, the natural propensity of the catalysts to dissolve at the low pHs used. This in turn we hope will encourage others to examine the promise of metastable electrocatalysts based on abundant elements for a range of reactions for which they have traditionally been overlooked on account of their perceived instability under the prevailing conditions.

5.
Chemistry ; 18(19): 6079-87, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22461280

RESUMO

The donor-functionalised alkoxides {Me(3-x)N(CH(2)CH(2)O)(x)} (L(x); x = 1, 2) have been used to form gallium hydride complexes [{GaH(2)(L(1))}(2)] and [{GaH(L(2))}(2)] that are stable and isolable at room temperature. Along with a heteroleptic gallium tris(alkoxide) complex [Ga(L(1))(3)] and the dimeric complex [{GaMe(L(2))}(2)], these compounds have been used as single-source precursors for the deposition of Ga(2)O(3) by aerosol-assisted chemical vapour deposition (AACVD) with toluene as solvent. The resulting films were mostly transparent, indicating low levels of carbon contamination, and they were also mainly amorphous. However, [Ga(L(1))(3)] did contain visibly crystalline material deposited at a substrate temperature of 450 °C, by far the lowest ever observed for the CVD of gallium oxide.

6.
Langmuir ; 28(3): 1879-85, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22185648

RESUMO

A rapid, clean, and continuous hydrothermal route to the synthesis of ca. 14 nm indium oxide (In(2)O(3)) nanoparticles using a superheated water flow at 400 °C and 24.1 MPa as a crystallizing medium and reagent is described. Powder X-ray diffraction (XRD) of the particles revealed that they were highly crystalline despite their very short time under hydrothermal flow conditions. Gas sensing substrates were prepared from an In(2)O(3) suspension via drop-coating, and their gas sensing properties were tested for response to butane, ethanol, CO, ammonia, and NO(2) gases. The sensors showed excellent selectivity toward ethanol, giving a response of 18-20 ppm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...