Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 118(26): 4778-89, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24905587

RESUMO

The behavior of complex interfacial systems is central to an ever-increasing number of applications. Vibrational sum frequency (VSF) spectroscopy is a powerful technique for obtaining surface specific structural information. The coherent nature of VSF that provides surface specificity, however, also creates difficulty in spectral interpretation especially as the system complexity increases. Computations of VSF spectra shed light on the molecular level source of the experimental VSF signal, allowing for the analysis of more complicated systems. Unfortunately, the majority of calculations of VSF spectra look at the response of the solvent or of rigid molecules and therefore often poorly reflect the experimental environment of most VSF spectroscopic measurements. In this work, flexible solute molecules at interfaces are investigated by doubling down, obtaining and comparing experimental and theoretical spectra, to determine a more accurate computational treatment. The surface behavior and VSF spectra of glutaric acid and adipic acid at the air/water interface are determined experimentally and calculated using a combination of classical molecular dynamics and density functional theory. Both diacids are found to be surface active. At high concentrations, glutaric acid forms dimers altering its VSF response and acidic properties. Calculated VSF spectra are found to be sensitive to vibrational mode frequencies, with ordering and spacing affecting relative intensities, as well as molecular conformation. A proper description requires consideration of multiple conformers and anharmonic effects on the molecular vibrational energies.

2.
J Phys Chem A ; 117(33): 7887-903, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23875994

RESUMO

Small organic compounds are increasingly being invoked as important players in atmospheric processes that occur on aerosol surfaces. The diacid succinic acid is one such constituent that is prevalent in the troposphere, surface active, and also water-soluble. This article presents a thorough examination of the surface characteristics of succinic acid at the vapor/water interface using a combination of theoretical simulation and experiments using vibrational sum frequency spectroscopy and surface tension. The adsorption and orientation of succinic acid at the water surface is characterized for a series of aqueous solution compositions relevant to atmospheric conditions. Fully protonated succinic acid is found to be particularly surface active. A new computational technique is introduced that provides a detailed picture of the different surface species that are contributing to the experimentally derived spectroscopic measurements. Additional results are presented for how SO2, a copollutant of succinic acid in the atmosphere, behaves at a water surface in the presence of surface adsorbed succinic acid.

3.
J Phys Chem A ; 117(12): 2529-42, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23384061

RESUMO

The presence of organic materials adsorbed to the surfaces of aerosol particles has been demonstrated to be a determining factor in relevant atmospheric processes. Malonic acid is a small, water-soluble organic acid that is common in aerosols and is surface-active. A comprehensive investigation of the adsorption of malonic acid to the air/water interface was accomplished using vibrational sum frequency spectroscopy (VSFS) and surface tension measurements as functions of concentration and pH. Malonic acid was found to be weakly solvated at the air/water interface, and its orientation as a function of concentration was explored through different VSFS polarization schemes. pH-dependent experiments revealed that the surface-active species is the fully protonated species. Computational analyses were used to obtain depth-specific geometries of malonic acid at the air/water interface that confirm and enrich the experimental results.

4.
J Phys Chem B ; 111(49): 13703-13, 2007 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-18004833

RESUMO

The effects of salts on the solubility of amphiphilic organic molecules are of importance to numerous atmospheric, environmental, and biological systems. A detailed picture of the influence of dissolved atmospheric salts, NaCl and Na(2)SO(4), on the adsorption of hexanoic acid at the vapor/water interface is developed using vibrational sum-frequency spectroscopy and surface tension measurements as a function of time, organic concentration, and solution pH. We have found that for hexanoic acid adsorption at the vapor/water interface, a fast initial adsorption is followed by two considerably slower processes: a reorientation of the polar headgroup and a restructuring of the headgroup solvation shell. The addition of salts affects this restructuring by reducing the range of water--headgroup interactions immediately upon surface adsorption for ion containing solutions. Reorientation of the organic headgroup with time occurs at the surface of both salt-containing and salt-free solutions, but the most stable orientation differs with the added ions. The dissolved salts also enhance the interfacial concentration of hexanoic acid, consistent with the known salting-out behavior of Cl(-) and SO(4)(2-) anions.

5.
J Phys Chem A ; 111(17): 3349-57, 2007 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-17419597

RESUMO

Nitric acid plays an important role in the heterogeneous chemistry of the atmosphere. Reactions involving HNO(3) at aqueous interfaces in the stratosphere and troposphere depend on the state of nitric acid at these surfaces. The vapor/liquid interface of HNO(3)-H2O binary solutions and HNO(3)-H(2)SO(4)-H2O ternary solutions are examined here using vibrational sum frequency spectroscopy (VSFS). Spectra of the NO2 group at different HNO(3) mole fractions and under different polarization combinations are used to develop a detailed picture of these atmospherically important systems. Consistent with surface tension and spectroscopic measurements from other laboratories, molecular nitric acid is identified at the surface of concentrated solutions. However, the data here reveal the adsorption of two different hydrogen-bonded species of undissociated HNO(3) in the interfacial region that differ in their degree of solvation of the nitro group. The adsorption of these undissociated nitric acid species is shown to be sensitive to the H2O:HNO(3) ratio as well as to the concentration of sulfuric acid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...