Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Biotechnol ; 36(5): 432-441, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29658944

RESUMO

Differentiation of human pluripotent stem cells to small brain-like structures known as brain organoids offers an unprecedented opportunity to model human brain development and disease. To provide a vascularized and functional in vivo model of brain organoids, we established a method for transplanting human brain organoids into the adult mouse brain. Organoid grafts showed progressive neuronal differentiation and maturation, gliogenesis, integration of microglia, and growth of axons to multiple regions of the host brain. In vivo two-photon imaging demonstrated functional neuronal networks and blood vessels in the grafts. Finally, in vivo extracellular recording combined with optogenetics revealed intragraft neuronal activity and suggested graft-to-host functional synaptic connectivity. This combination of human neural organoids and an in vivo physiological environment in the animal brain may facilitate disease modeling under physiological conditions.


Assuntos
Encéfalo/crescimento & desenvolvimento , Neurogênese/genética , Organoides/crescimento & desenvolvimento , Células-Tronco Pluripotentes/citologia , Animais , Vasos Sanguíneos/diagnóstico por imagem , Vasos Sanguíneos/crescimento & desenvolvimento , Encéfalo/diagnóstico por imagem , Diferenciação Celular/genética , Humanos , Camundongos , Neurônios/citologia , Células-Tronco Pluripotentes/fisiologia , Transplantes/diagnóstico por imagem , Transplantes/crescimento & desenvolvimento
3.
Nat Neurosci ; 19(6): 788-91, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27135217

RESUMO

We longitudinally imaged the developing dendrites of adult-born mouse dentate granule cells (DGCs) in vivo and found that they underwent over-branching and pruning. Exposure to an enriched environment and constraint of dendritic growth by disrupting Wnt signaling led to increased branch addition and accelerated growth, which were, however, counteracted by earlier and more extensive pruning. Our results indicate that pruning is regulated in a homeostatic fashion to oppose excessive branching and promote a similar dendrite structure in DGCs.


Assuntos
Dendritos/fisiologia , Hipocampo/citologia , Plasticidade Neuronal/fisiologia , Animais , Grânulos Citoplasmáticos/metabolismo , Feminino , Homeostase/fisiologia , Camundongos Endogâmicos C57BL , Modelos Animais , Neuroimagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...