Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Psychiatry ; 13(1): 268, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491358

RESUMO

Plasma biomarkers have shown promising performance in research cohorts in discriminating between different stages of Alzheimer's disease (AD). Studies in clinical populations are necessary to provide insights on the clinical utility of plasma biomarkers before their implementation in real-world settings. Here we investigated plasma biomarkers (glial fibrillary acidic protein (GFAP), tau phosphorylated at 181 and 231 (pTau181, pTau231), amyloid ß (Aß) 42/40 ratio, neurofilament light) in 126 patients (age = 65 ± 8) who were admitted to the Clinic for Cognitive Disorders, at Karolinska University Hospital. After extensive clinical assessment (including CSF analysis), patients were classified as: mild cognitive impairment (MCI) (n = 75), AD (n = 25), non-AD dementia (n = 16), no dementia (n = 9). To refine the diagnosis, patients were examined with [18F]flutemetamol PET (Aß-PET). Aß-PET images were visually rated for positivity/negativity and quantified in Centiloid. Accordingly, 68 Aß+ and 54 Aß- patients were identified. Plasma biomarkers were measured using single molecule arrays (SIMOA). Receiver-operated curve (ROC) analyses were performed to detect Aß-PET+ using the different biomarkers. In the whole cohort, the Aß-PET centiloid values correlated positively with plasma GFAP, pTau231, pTau181, and negatively with Aß42/40 ratio. While in the whole MCI group, only GFAP was associated with Aß PET centiloid. In ROC analyses, among the standalone biomarkers, GFAP showed the highest area under the curve discriminating Aß+ and Aß- compared to other plasma biomarkers. The combination of plasma biomarkers via regression was the most predictive of Aß-PET, especially in the MCI group (prior to PET, n = 75) (sensitivity = 100%, specificity = 82%, negative predictive value = 100%). In our cohort of memory clinic patients (mainly MCI), the combination of plasma biomarkers was sensitive in ruling out Aß-PET negative individuals, thus suggesting a potential role as rule-out tool in clinical practice.


Assuntos
Doença de Alzheimer , Transtornos Cognitivos , Disfunção Cognitiva , Humanos , Pessoa de Meia-Idade , Idoso , Peptídeos beta-Amiloides , Tomografia por Emissão de Pósitrons/métodos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Disfunção Cognitiva/diagnóstico , Biomarcadores , Proteínas tau
2.
Cells ; 12(11)2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37296589

RESUMO

Reactive astrogliosis is an early event in the continuum of Alzheimer's disease (AD). Current advances in positron emission tomography (PET) imaging provide ways of assessing reactive astrogliosis in the living brain. In this review, we revisit clinical PET imaging and in vitro findings using the multi-tracer approach, and point out that reactive astrogliosis precedes the deposition of Aß plaques, tau pathology, and neurodegeneration in AD. Furthermore, considering the current view of reactive astrogliosis heterogeneity-more than one subtype of astrocyte involved-in AD, we discuss how astrocytic body fluid biomarkers might fit into trajectories different from that of astrocytic PET imaging. Future research focusing on the development of innovative astrocytic PET radiotracers and fluid biomarkers may provide further insights into the heterogeneity of reactive astrogliosis and improve the detection of AD in its early stages.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Astrócitos/patologia , Gliose/patologia , Tomografia por Emissão de Pósitrons/métodos , Biomarcadores , Inflamação/patologia
3.
Alzheimers Dement ; 19(11): 4896-4907, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37052206

RESUMO

INTRODUCTION: ß-synuclein is an emerging blood biomarker to study synaptic degeneration in Alzheimer´s disease (AD), but its relation to amyloid-ß (Αß) pathology is unclear. METHODS: We investigated the association of plasma ß-synuclein levels with [18F] flutemetamol positron emission tomography (PET) in patients with AD dementia (n = 51), mild cognitive impairment (MCI-Aß+ n = 18, MCI- Aß- n = 30), non-AD dementias (n = 22), and non-demented controls (n = 5). RESULTS: Plasma ß-synuclein levels were higher in Aß+ (AD dementia, MCI-Aß+) than in Aß- subjects (non-AD dementias, MCI-Aß-) with good discrimination of Aß+ from Aß- subjects and prediction of Aß status in MCI individuals. A positive correlation between plasma ß-synuclein and Aß PET was observed in multiple cortical regions across all lobes. DISCUSSION: Plasma ß-synuclein demonstrated discriminative properties for Aß PET positive and negative subjects. Our data underline that ß-synuclein is not a direct marker of Aß pathology and suggest different longitudinal dynamics of synaptic degeneration versus amyloid deposition across the AD continuum. HIGHLIGHTS: Blood and CSF ß-synuclein levels are higher in Aß+ than in Aß- subjects. Blood ß-synuclein level correlates with amyloid PET positivity in multiple regions. Blood ß-synuclein predicts Aß status in MCI individuals.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , beta-Sinucleína , Encéfalo/patologia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Tomografia por Emissão de Pósitrons/métodos , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Biomarcadores
4.
Brain Sci ; 11(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34439645

RESUMO

Biomarkers to detect Alzheimer's disease (AD) would enable patients to gain access to appropriate services and may facilitate the development of new therapies. Given the large numbers of people affected by AD, there is a need for a low-cost, easy to use method to detect AD patients. Potentially, the electroencephalogram (EEG) can play a valuable role in this, but at present no single EEG biomarker is robust enough for use in practice. This study aims to provide a methodological framework for the development of robust EEG biomarkers to detect AD with a clinically acceptable performance by exploiting the combined strengths of key biomarkers. A large number of existing and novel EEG biomarkers associated with slowing of EEG, reduction in EEG complexity and decrease in EEG connectivity were investigated. Support vector machine and linear discriminate analysis methods were used to find the best combination of the EEG biomarkers to detect AD with significant performance. A total of 325,567 EEG biomarkers were investigated, and a panel of six biomarkers was identified and used to create a diagnostic model with high performance (≥85% for sensitivity and 100% for specificity).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...