Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stroke Res Treat ; 2016: 6941946, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26949561

RESUMO

Stroke is a leading cause of death and disability. Effects of stroke include significant deficits in sensory-motor skills and cognitive abilities. At present, there are limited effective interventions for postacute stroke patients. In this preliminary research we studied a new noninvasive, very low intensity, low frequency, electromagnetic field treatment (VLIFE), targeting a neural network, on an in vivo stroke rat model. Eighteen rats were divided into three groups: sham (M1) and two treatment groups which were exposed to VLIFE treatment for 4 weeks, one using theta waves (M2) and another using beta waves (M3); all groups were followed up for an additional month. Results indicate that the M2 and M3 treated groups showed recovery of sensorimotor functional deficits, as demonstrated by Modified Neurological Severity Score and forelimb placement tests. Brain MRI imaging results show a decrease in perilesional edema and lateral ventricle widening in the treated groups. Fiber tracts' imaging, following VLIFE treatment, showed a higher white matter integrity compared to control. Histological findings support neural regeneration processes. Our data suggest that VLIFE treatment, targeting a specific functional neural network by frequency rather than location, promotes neuronal plasticity after stroke and, as a result, improves clinical recovery. Further studies will investigate the full potential of the treatment.

2.
Exp Neurol ; 234(2): 417-27, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22285250

RESUMO

Huntington's disease (HD) is a hereditary, progressive and ultimately fatal neurodegenerative disorder. Excitotoxicity and reduced availability of neurotrophic factors (NTFs) likely play roles in HD pathogenesis. Recently we developed a protocol that induces adult human bone marrow derived mesenchymal stem cells (MSCs) into becoming NTF secreting cells (NTF(+) cells). Striatal transplantation of such cells represents a promising autologous therapeutic approach whereby NTFs are delivered to damaged areas. Here, the efficacy of NTF(+) cells was evaluated using the quinolinic acid (QA) rat model for excitotoxicity. We show that NTF(+) cells transplanted into rat brains after QA injection survive transplantation (19% after 6 weeks), maintain their NTF secreting phenotype and significantly reduce striatal volume changes associated with QA lesions. Moreover, QA-injected rats treated with NTF(+) cells exhibit improved behavior; namely, perform 80% fewer apomorphine induced rotations than PBS-treated QA-injected rats. Importantly, we found that MSCs derived from HD patients can be induced to become NTF(+) cells and exert efficacious effects similarly to NTF(+) cells derived from healthy donors. To our knowledge, this is the first study to take adult bone marrow derived mesenchymal stem cells from patients with an inherited disease, transplant them into an animal model and evidence therapeutic benefit. Using MRI we demonstrate in vivo that PBS-treated QA-injected striatae exhibit increasing T(2) values over time in lesioned regions, whereas T(2) values decrease in equivalent regions of QA-injected rats treated with NTF(+) cells. We conclude that NTF cellular treatment could serve as a novel therapy for managing HD.


Assuntos
Corpo Estriado/patologia , Doença de Huntington/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Fatores de Crescimento Neural/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Humanos , Células-Tronco Mesenquimais/patologia , Ácido Quinolínico , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...