Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Rev Oncol Hematol ; 175: 103709, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35580765

RESUMO

BACKGROUND: Cancer survivors suffer from health deficits caused by their disease and treatment. This study conducted a systematic review and meta-analysis on how, and to what extent, cognitive-behavioral therapy (CBT) impacts functional health outcomes in cancer survivors. METHODS: We searched 7 electronic databases, 91 published review articles, and 4 professional websites for eligible randomized and non-randomized controlled trials focusing on cancer survivors. RESULTS: We included 95 studies published between 1986 and 2021. Risk of bias across studies was low overall. We identified an overall statistically significant treatment effect size across functional health categories, d = 0.391, p < 0.001, and significant moderators associated with CBT's treatment effect, i.e., treatment phase and type of comparison. CONCLUSIONS: CBT was effective at improving functional health outcomes of cancer survivors, regardless of therapy delivery modality or number of cancer diagnoses patients had, but not for newly diagnosed patients or those currently benefiting from an active comparator intervention.


Assuntos
Sobreviventes de Câncer , Terapia Cognitivo-Comportamental , Neoplasias , Humanos , Neoplasias/complicações , Neoplasias/terapia , Sobreviventes
2.
J Neurosci ; 42(8): 1604-1617, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35042771

RESUMO

Spinocerebellar ataxia Type 3 (SCA3), the most common dominantly inherited ataxia, is a polyglutamine neurodegenerative disease for which there is no disease-modifying therapy. The polyglutamine-encoding CAG repeat expansion in the ATXN3 gene results in expression of a mutant form of the ATXN3 protein, a deubiquitinase that causes selective neurodegeneration despite being widely expressed. The mechanisms driving neurodegeneration in SCA3 are unclear. Research to date, however, has focused almost exclusively on neurons. Here, using equal male and female age-matched transgenic mice expressing full-length human mutant ATXN3, we identified early and robust transcriptional changes in selectively vulnerable brain regions that implicate oligodendrocytes in disease pathogenesis. We mapped transcriptional changes across early, mid, and late stages of disease in two selectively vulnerable brain regions: the cerebellum and brainstem. The most significant disease-associated module through weighted gene coexpression network analysis revealed dysfunction in SCA3 oligodendrocyte maturation. These results reflect a toxic gain-of-function mechanism, as ATXN3 KO mice do not exhibit any impairments in oligodendrocyte maturation. Genetic crosses to reporter mice revealed a marked reduction in mature oligodendrocytes in SCA3-disease vulnerable brain regions, and ultrastructural microscopy confirmed abnormalities in axonal myelination. Further study of isolated oligodendrocyte precursor cells from SCA3 mice established that this impairment in oligodendrocyte maturation is a cell-autonomous process. We conclude that SCA3 is not simply a disease of neurons, and the search for therapeutic strategies and disease biomarkers will need to account for non-neuronal involvement in SCA3 pathogenesis.SIGNIFICANCE STATEMENT Despite advances in spinocerebellar ataxia Type 3 (SCA3) disease understanding, much remains unknown about how the disease gene causes brain dysfunction ultimately leading to cell death. We completed a longitudinal transcriptomic analysis of vulnerable brain regions in SCA3 mice to define the earliest and most robust changes across disease progression. Through gene network analyses followed up with biochemical and histologic studies in SCA3 mice, we provide evidence for severe dysfunction in oligodendrocyte maturation early in SCA3 pathogenesis. Our results advance understanding of SCA3 disease mechanisms, identify additional routes for therapeutic intervention, and may provide broader insight into polyglutamine diseases beyond SCA3.


Assuntos
Doença de Machado-Joseph , Doenças Neurodegenerativas , Oligodendroglia , Animais , Ataxina-3/genética , Ataxina-3/metabolismo , Feminino , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Masculino , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/patologia
3.
Ann Neurol ; 84(1): 64-77, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29908063

RESUMO

OBJECTIVE: Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease, is the most common dominantly inherited ataxia. Despite advances in understanding this CAG repeat/polyglutamine expansion disease, there are still no therapies to alter its progressive fatal course. Here, we investigate whether an antisense oligonucleotide (ASO) targeting the SCA3 disease gene, ATXN3, can prevent molecular, neuropathological, electrophysiological, and behavioral features of the disease in a mouse model of SCA3. METHODS: The top ATXN3-targeting ASO from an in vivo screen was injected intracerebroventricularly into early symptomatic transgenic SCA3 mice that express the full human disease gene and recapitulate key disease features. Following a single ASO treatment at 8 weeks of age, mice were evaluated longitudinally for ATXN3 suppression and rescue of disease-associated pathological changes. Mice receiving an additional repeat injection at 21 weeks were evaluated longitudinally up to 29 weeks for motor performance. RESULTS: The ATXN3-targeting ASO achieved sustained reduction of polyglutamine-expanded ATXN3 up to 8 weeks after treatment and prevented oligomeric and nuclear accumulation of ATXN3 up to at least 14 weeks after treatment. Longitudinal ASO therapy rescued motor impairment in SCA3 mice, and this rescue was associated with a recovery of defects in Purkinje neuron firing frequency and afterhyperpolarization. INTERPRETATION: This preclinical study established efficacy of ATXN3-targeted ASOs as a disease-modifying therapeutic strategy for SCA3. These results support further efforts to develop ASOs for human clinical trials in this polyglutamine disease as well as in other dominantly inherited disorders caused by toxic gain of function. Ann Neurol 2018;83:64-77.


Assuntos
Ataxina-3/química , Regulação da Expressão Gênica/efeitos dos fármacos , Doença de Machado-Joseph/tratamento farmacológico , Oligonucleotídeos Antissenso/uso terapêutico , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Fatores Etários , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Ataxina-3/genética , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/genética , Gliose/tratamento farmacológico , Gliose/etiologia , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/patologia , Doença de Machado-Joseph/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Mutação/genética , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/patologia , Proteínas de Ligação a RNA/metabolismo
4.
Mol Ther Nucleic Acids ; 7: 200-210, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28624196

RESUMO

The most common dominantly inherited ataxia, spinocerebellar ataxia type 3 (SCA3), is an incurable neurodegenerative disorder caused by a CAG repeat expansion in the ATXN3 gene that encodes an abnormally long polyglutamine tract in the disease protein, ATXN3. Mice lacking ATXN3 are phenotypically normal; hence, disease gene suppression offers a compelling approach to slow the neurodegenerative cascade in SCA3. Here we tested antisense oligonucleotides (ASOs) that target human ATXN3 in two complementary mouse models of SCA3: yeast artificial chromosome (YAC) MJD-Q84.2 (Q84) mice expressing the full-length human ATXN3 gene and cytomegalovirus (CMV) MJD-Q135 (Q135) mice expressing a human ATXN3 cDNA. Intracerebroventricular injection of ASOs resulted in widespread delivery to the most vulnerable brain regions in SCA3. In treated Q84 mice, three of five tested ASOs reduced disease protein levels by >50% in the diencephalon, cerebellum, and cervical spinal cord. Two ASOs also significantly reduced mutant ATXN3 in the mouse forebrain and resulted in no signs of astrogliosis or microgliosis. In Q135 mice expressing a single ATXN3 isoform via a cDNA transgene, ASOs did not result in similar robust ATXN3 silencing. Our results indicate that ASOs targeting full-length human ATXN3 would likely be well tolerated and could lead to a preventative therapy for SCA3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...