Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Tissue Res ; 370(3): 347-363, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28924861

RESUMO

The expression patterns of the neurotrophin, brain-derived neurotrophic factor, BDNF, and the neurotrophic receptors-p75NTR and Trk receptors-in the developing human fetal inner ear between the gestational weeks (GW) 9 to 12 are examined via in situ hybridization and immunohistochemistry. BDNF mRNA expression was highest in the cochlea at GW 9 but declined in the course of development. In contrast to embryonic murine specimens, a decline in BDNF expression from the apical to the basal turn of the cochlea could not be observed. p75NTR immunostaining was most prominent in the nerve fibers that penetrate into the sensory epithelia of the cochlea, the urticule and the saccule as gestational age progresses. TrkB and TrkC expression intensified towards GW 12, at which point the BDNF mRNA localization was at its lowest. TrkA expression was limited to fiber subpopulations of the facial nerve at GW 10. In the adult human inner ear, we observed BDNF mRNA expression in the apical poles of the cochlear hair cells and supporting cells, while in the adult human utricle, the expression was localized in the vestibular hair cells. We demonstrate the highly specific staining patterns of BDNF mRNA and its putative receptors over a developmental period in which multiple hearing disorders are manifested. Our findings suggest that BDNF and neurotrophin receptors are important players during early human inner ear development. In particular, they seem to be important for the survival of the afferent sensory neurons.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cóclea/embriologia , Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Animais , Sequência de Bases , Cóclea/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Receptor trkA/metabolismo , Receptor trkB/metabolismo , Receptor trkC/metabolismo
2.
Anat Embryol (Berl) ; 207(6): 453-62, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14760531

RESUMO

In this study the detailed morphology and the function of cartilage canals in the chicken femur are investigated. Several embryonic stages (e 13.5, 16, 19, and 20) are examined by means of light microscopy, electron microscopy (TEM), and immunohistochemistry (VEGF, type I and II collagen). Our results show that cartilage canals originate from the perichondrium and form a complex pattern. Two types of canals are distinguishable: shell canals and communicating canals. Shell canals are in the reserve zone and are arranged in successive layers. Communicating canals spring from the shell canals and pass down into the proliferative zone and into the hypertrophic zone. These canals are conical shaped and are orientated nearly in parallel to the long axis of the femur. Cartilage canals comprise venules, arterioles, capillaries (mature and immature), and undifferentiated mesenchymal cells. No canal wall in the sense of an epithelium is elaborated. VEGF is detected in both types of canals and macrophages are found at the end of the cartilage canals. We conclude that the growth factor stimulates angiogenesis and that the latter cells erode the matrix ahead of the canals and thus enable the advancement of the vessels. The results clearly show that the canal matrix differs from the remaining cartilage matrix. The canal matrix contains type I collagen, few type II collagen fibrils and proteoglycans are lacking. In contrast, in the cartilage matrix type II collagen and proteoglycans are abundant but no type I collagen is found. Communicating canals are surrounded by a distinct layer of type I collagen indicating that osteoid is formed around these canals. Hypertrophic chondrocytes label for type I collagen and it seemed possible that chondrocytes adjacent to the communicating canals differentiate into bone-forming cells. Our results provide evidence that cartilage canals are involved in nourishment of the cartilage as well as in the ossification process.


Assuntos
Cartilagem/embriologia , Fêmur/embriologia , Organogênese , Osteogênese/fisiologia , Animais , Calcificação Fisiológica , Cartilagem/metabolismo , Cartilagem/ultraestrutura , Embrião de Galinha , Colágeno Tipo I/metabolismo , Colágeno Tipo II/metabolismo , Matriz Extracelular/metabolismo , Fêmur/metabolismo , Imageamento Tridimensional/métodos , Imuno-Histoquímica , Microscopia Eletrônica de Varredura , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...