Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 56(6): 1734-43, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19527951

RESUMO

Thalamic relay cells express distinctive response modes based on the state of a low-threshold calcium channel (T-channel). When the channel is fully active (burst mode), the cell responds to inputs with a high-frequency burst of spikes; with the channel inactive ( tonic mode), the cell responds at a rate proportional to the input. Due to the T-channel's dynamics, we expect the cell's response to become more nonlinear as the channel becomes more active. To test this hypothesis, we study the response of an in silico relay cell to Poisson spike trains. We first validate our model cell by comparing its responses with in vitro responses. To characterize the model cell's nonlinearity, we calculate Poisson kernels, an approach akin to white noise analysis but using the randomness of Poisson input spikes instead of Gaussian white noise. We find that a relay cell with active T-channels requires at least a third-order system to achieve a characterization as good as a second-order system for a relay cell without T-channels.


Assuntos
Potenciais de Ação , Canais de Cálcio Tipo T/fisiologia , Simulação por Computador , Dendritos/fisiologia , Modelos Neurológicos , Dinâmica não Linear , Algoritmos , Inteligência Artificial , Distribuição de Poisson , Reprodutibilidade dos Testes , Tálamo/citologia
2.
IEEE Trans Neural Netw ; 18(6): 1815-25, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18051195

RESUMO

In this paper, we present a network of silicon interneurons that synchronize in the gamma frequency range (20-80 Hz). The gamma rhythm strongly influences neuronal spike timing within many brain regions, potentially playing a crucial role in computation. Yet it has largely been ignored in neuromorphic systems, which use mixed analog and digital circuits to model neurobiology in silicon. Our neurons synchronize by using shunting inhibition (conductance based) with a synaptic rise time. Synaptic rise time promotes synchrony by delaying the effect of inhibition, providing an opportune period for interneurons to spike together. Shunting inhibition, through its voltage dependence, inhibits interneurons that spike out of phase more strongly (delaying the spike further), pushing them into phase (in the next cycle). We characterize the interneuron, which consists of soma (cell body) and synapse circuits, fabricated in a 0.25-microm complementary metal-oxide-semiconductor (CMOS). Further, we show that synchronized interneurons (population of 256) spike with a period that is proportional to the synaptic rise time. We use these interneurons to entrain model excitatory principal neurons and to implement a form of object binding.


Assuntos
Potenciais de Ação/fisiologia , Córtex Cerebral/fisiologia , Sincronização Cortical , Interneurônios/fisiologia , Redes Neurais de Computação , Vias Neurais/fisiologia , Animais , Simulação por Computador , Dendritos/fisiologia , Eletrônica Médica/instrumentação , Eletrônica Médica/métodos , Eletrofisiologia/instrumentação , Eletrofisiologia/métodos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Humanos , Modelos Neurológicos , Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Procainamida , Células Piramidais/fisiologia , Silício , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...