Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 25(8): 9186-9195, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28437992

RESUMO

The intrinsic spectral dimensionality indicates the observable degrees of freedom in Earth's solar-reflected light field, quantifying the diversity of spectral content accessible by visible and infrared remote sensing. The solar-reflected regime spans the 0.38 - 2.5 µm interval, and is captured by a wide range of current and planned instruments on both airborne and orbital platforms. To date there has been no systematic study of its spectral dimensionality as a function of space, time, and land cover. Here we report a multi-site, multi-year statistical survey by NASA's "Classic" Airborne Visible Near InfraRed Spectrometer (AVIRIS-C). AVIRIS-C measured large regions of California, USA, spanning wide latitudinal and elevation gradients containing all canonical MODIS land cover types. The spectral uniformity of the AVIRIS-C design enabled consistent in-scene assessment of measurement noise across acquisitions. The estimated dimensionality as a function of cover type ranged from the low 20s to the high 40s, and was approximately 50 for the combined dataset. This result indicates the high diversity of physical processes distinguishable by imaging spectrometers like AVIRIS-C for one region of the Earth.

2.
Appl Opt ; 53(7): 1363-80, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24663366

RESUMO

The design, characteristics, and first test flight results are described of the Portable Remote Imaging Spectrometer, an airborne sensor specifically designed to address the challenges of coastal ocean remote sensing. The sensor incorporates several technologies that are demonstrated for the first time, to the best of our knowledge, in a working system in order to achieve a high performance level in terms of uniformity, signal-to-noise ratio, low polarization sensitivity, low stray light, and high spatial resolution. The instrument covers the 350-1050 nm spectral range with a 2.83 nm sampling per pixel, and a 0.88 mrad instantaneous field of view, with 608 cross-track pixels in a pushbroom configuration. Two additional infrared channels (1240 and 1610 nm) are measured by a spot radiometer housed in the same head. The spectrometer design is based on an optically fast (F/1.8) Dyson design form coupled to a wide angle two-mirror telescope in a configuration that minimizes polarization sensitivity without the use of a depolarizer. A grating with minimum polarization sensitivity and broadband efficiency was fabricated as well as a slit assembly with black (etched) silicon surface to minimize backscatter. First flight results over calibration sites as well as Monterey Bay in California have demonstrated good agreement between in situ and remotely sensed data, confirming the potential value of the sensor to the coastal ocean science community.


Assuntos
Aeronaves/instrumentação , Monitoramento Ambiental/instrumentação , Tecnologia de Sensoriamento Remoto/instrumentação , Água do Mar/análise , Água do Mar/química , Análise Espectral/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Oceanos e Mares , Projetos Piloto
3.
Proc Natl Acad Sci U S A ; 105(11): 4519-23, 2008 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-18316720

RESUMO

Biological invasions contribute to global environmental change, but the dynamics and consequences of most invasions are difficult to assess at regional scales. We deployed an airborne remote sensing system that mapped the location and impacts of five highly invasive plant species across 221,875 ha of Hawaiian ecosystems, identifying four distinct ways that these species transform the three-dimensional (3D) structure of native rain forests. In lowland to montane forests, three invasive tree species replace native midcanopy and understory plants, whereas one understory invader excludes native species at the ground level. A fifth invasive nitrogen-fixing tree, in combination with a midcanopy alien tree, replaces native plants at all canopy levels in lowland forests. We conclude that this diverse array of alien plant species, each representing a different growth form or functional type, is changing the fundamental 3D structure of native Hawaiian rain forests. Our work also demonstrates how an airborne mapping strategy can identify and track the spread of certain invasive plant species, determine ecological consequences of their proliferation, and provide detailed geographic information to conservation and management efforts.


Assuntos
Ecossistema , Fenômenos Fisiológicos Vegetais , Chuva , Árvores , Havaí , Imageamento Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...