Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Genomics ; 116(3): 110854, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701989

RESUMO

Several studies demonstrated that populations living in the Tibetan plateau are genetically and physiologically adapted to high-altitude conditions, showing genomic signatures ascribable to the action of natural selection. However, so far most of them relied solely on inferences drawn from the analysis of coding variants and point mutations. To fill this gap, we focused on the possible role of polymorphic transposable elements in influencing the adaptation of Tibetan and Sherpa highlanders. To do so, we compared high-altitude and middle/low-lander individuals of East Asian ancestry by performing in silico analyses and differentiation tests on 118 modern and ancient samples. We detected several transposable elements associated with high altitude, which map genes involved in cardiovascular, hematological, chem-dependent and respiratory conditions, suggesting that metabolic and signaling pathways taking part in these functions are disproportionately impacted by the effect of environmental stressors in high-altitude individuals. To our knowledge, our study is the first hinting to a possible role of transposable elements in the adaptation of Tibetan and Sherpa highlanders.


Assuntos
Altitude , Elementos de DNA Transponíveis , Tibet , Humanos , Adaptação Fisiológica/genética , Aclimatação/genética , Polimorfismo Genético , Povo Asiático/genética
2.
Sci Rep ; 13(1): 9039, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270634

RESUMO

The presence in nature of species showing drastic differences in lifespan and cancer incidence has recently increased the interest of the scientific community. In particular, the adaptations and the genomic features underlying the evolution of cancer-resistant and long-lived organisms have recently focused on transposable elements (TEs). In this study, we compared the content and dynamics of TE activity in the genomes of four rodent and six bat species exhibiting different lifespans and cancer susceptibility. Mouse, rat, and guinea pig genomes (short-lived and cancer-prone organisms) were compared with that of naked mole rat (Heterocephalus glaber) which is a cancer-resistant organism and the rodent with the longest lifespan. The long-lived bats of the genera Myotis, Rhinolophus, Pteropus and Rousettus were instead compared with Molossus molossus, which is one of the organisms with the shortest lifespan among the order Chiroptera. Despite previous hypotheses stating a substantial tolerance of TEs in bats, we found that long-lived bats and the naked mole rat share a marked decrease of non-LTR retrotransposons (LINEs and SINEs) accumulation in recent evolutionary times.


Assuntos
Quirópteros , Neoplasias , Animais , Cobaias , Camundongos , Quirópteros/genética , Retroelementos/genética , Incidência , Envelhecimento , Ratos-Toupeira/genética , Neoplasias/epidemiologia , Neoplasias/genética , Neoplasias/veterinária
3.
Transl Psychiatry ; 13(1): 181, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244930

RESUMO

Transposable elements (TEs) are mobile genetic elements that constitute half of the human genome. Recent studies suggest that polymorphic non-reference TEs (nrTEs) may contribute to cognitive diseases, such as schizophrenia, through a cis-regulatory effect. The aim of this work is to identify sets of nrTEs putatively linked to an increased risk of developing schizophrenia. To do so, we inspected the nrTE content of genomes from the dorsolateral prefrontal cortex of schizophrenic and control individuals and identified 38 nrTEs that possibly contribute to the emergence of this psychiatric disorder, two of them further confirmed with haplotype-based methods. We then performed in silico functional inferences and found that 9 of the 38 nrTEs act as expression/alternative splicing quantitative trait loci (eQTLs/sQTLs) in the brain, suggesting a possible role in shaping the human cognitive genome structure. To our knowledge, this is the first attempt at identifying polymorphic nrTEs that can contribute to the functionality of the brain. Finally, we suggest that a neurodevelopmental genetic mechanism, which involves evolutionarily young nrTEs, can be key to understanding the ethio-pathogenesis of this complex disorder.


Assuntos
Retroelementos , Esquizofrenia , Humanos , Retroelementos/genética , Esquizofrenia/genética , Encéfalo , Locos de Características Quantitativas , Haplótipos
4.
Res Sq ; 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36747630

RESUMO

Transposable Elements (TEs) are mobile genetic elements that constitute half of the human genome. Recent studies suggest that polymorphic non-reference TEs (nrTEs) may contribute to cognitive diseases, such as schizophrenia, through a cis-regulatory effect. The aim of this work is to identify sets of nrTEs putatively linked to an increased risk of developing schizophrenia. To do so, we inspected the nrTE content of genomes from the Dorsolateral Prefrontal Cortex of schizophrenic and control individuals, and identified 38 nrTEs which possibly contribute to the emergence of this psychiatric disorder. Furthermore, we performed in silico functional inferences and found, for instance, that 9 of the 38 nrTEs act as expression/alternative splicing quantitative trait loci (eQTLs/sQTLs) in the brain, suggesting a possible role in shaping the human cognitive genome structure. Therefore, to our knowledge, this is the first attempt at identifying polymorphic nrTEs that can contribute to the functionality of the brain. Finally, we suggest that a neurodevelopmental genetic mechanism, which involves evolutionarily young nrTEs, can be the key to understanding the ethiopathogenesis of this complex disorder.

5.
Mob DNA ; 13(1): 27, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36443831

RESUMO

Retrotransposons are genetic elements with the ability to replicate in the genome using reverse transcriptase: they have been associated with the development of different biological structures, such as the Central Nervous System (CNS), and their high mutagenic potential has been linked to various diseases, including cancer and neurological disorders. Throughout evolution and over time, Primates and Homo had to cope with infections from viruses and bacteria, and also with endogenous retroelements. Therefore, host genomes have evolved numerous methods to counteract the activity of endogenous and exogenous pathogens, and the APOBEC3 family of mutators is a prime example of a defensive mechanism in this context.In most Primates, there are seven members of the APOBEC3 family of deaminase proteins: among their functions, there is the ability to inhibit the mobilization of retrotransposons and the functionality of viruses. The evolution of the APOBEC3 proteins found in Primates is correlated with the expansion of two major families of retrotransposons, i.e. ERV and LINE-1.In this review, we will discuss how the rapid expansion of the APOBEC3 family is linked to the evolution of retrotransposons, highlighting the strong evolutionary arms race that characterized the history of APOBEC3s and endogenous retroelements in Primates. Moreover, the possible role of this relationship will be assessed in the context of embryonic development and brain-associated diseases.

6.
Geroscience ; 44(3): 1525-1550, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35585302

RESUMO

Recent reports have suggested that the reactivation of otherwise transcriptionally silent transposable elements (TEs) might induce brain degeneration, either by dysregulating the expression of genes and pathways implicated in cognitive decline and dementia or through the induction of immune-mediated neuroinflammation resulting in the elimination of neural and glial cells. In the work we present here, we test the hypothesis that differentially expressed TEs in blood could be used as biomarkers of cognitive decline and development of AD. To this aim, we used a sample of aging subjects (age > 70) that developed late-onset Alzheimer's disease (LOAD) over a relatively short period of time (12-48 months), for which blood was available before and after their phenoconversion, and a group of cognitive stable subjects as controls. We applied our developed and validated customized pipeline that allows the identification, characterization, and quantification of the differentially expressed (DE) TEs before and after the onset of manifest LOAD, through analyses of RNA-Seq data. We compared the level of DE TEs within more than 600,000 TE-mapping RNA transcripts from 25 individuals, whose specimens we obtained before and after their phenotypic conversion (phenoconversion) to LOAD, and discovered that 1790 TE transcripts showed significant expression differences between these two timepoints (logFC ± 1.5, logCMP > 5.3, nominal p value < 0.01). These DE transcripts mapped both over- and under-expressed TE elements. Occurring before the clinical phenoconversion, this TE storm features significant increases in DE transcripts of LINEs, LTRs, and SVAs, while those for SINEs are significantly depleted. These dysregulations end with signs of manifest LOAD. This set of highly DE transcripts generates a TE transcriptional profile that accurately discriminates the before and after phenoconversion states of these subjects. Our findings suggest that a storm of DE TEs occurs before phenoconversion from normal cognition to manifest LOAD in risk individuals compared to controls, and may provide useful blood-based biomarkers for heralding such a clinical transition, also suggesting that TEs can indeed participate in the complex process of neurodegeneration.


Assuntos
Doença de Alzheimer , Retroelementos , Doença de Alzheimer/genética , Biomarcadores , Humanos , RNA
7.
Front Genet ; 12: 720640, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659342

RESUMO

Roccapelago (MO) is a small village located in the Northern Central Apennines, with a population of 31 inhabitants (2014). In 2010, more than 400 individuals dated between the end of the 16th and the 18th century, many of which partially mummified, were discovered in the crypt of the church. This small village, because of its geographical location and surrounding environment, seems to possess the characteristics of a genetic isolate, useful for population genetics and genealogical analyses. Thus, a diachronic study of DNA aimed at investigating the structure and dynamics of the population of Roccapelago over the about 4 centuries, was conducted by analyzing ancient and modern inhabitants of the village. The 14 modern samples were selected by considering both the founder surnames of the village, identified thanks to the study of parish registers, and the grandparent's criterion. From 25 ancient mummies, morphologically assigned to male individuals, the petrous bone, that harbors high DNA amounts, was selected for the DNA extraction. The quantification and qualitative assessment of total human male DNA were evaluated by a real-time PCR assay using the Quantifiler Trio DNA Quantification Kit and multiplex PCR of 27 Y-chromosome short tandem repeat (Y-STR) markers included in the Yfiler Plus PCR Amplification Kit, with seven rapidly mutating Y-STR loci for improving discrimination of male lineages, was performed to genotype the samples. Y-STRs were analyzed according to the criteria of ancient DNA (aDNA) analysis to ensure that authentic DNA typing results were obtained from these ancient samples. The molecular analysis showed the usefulness of the Y chromosome to identify historically relevant remains and discover patterns of relatedness in communities moving from anthropology to genetic genealogy and forensics.

8.
Ann Hum Biol ; 48(3): 260-269, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34459343

RESUMO

BACKGROUND: Thanks to the availability of rich surname, linguistic and genetic information, together with its geographic and cultural complexity, Trentino (North-Eastern Italy) is an ideal place to test the relationships between genetic and cultural traits. AIM: We provide a comprehensive study of population structures based on surname and dialect variability and evaluate their relationships with genetic diversity in Trentino. SUBJECTS AND METHODS: Surname data were collected for 363 parishes, linguistic data for 57 dialects and genetic data for different sets of molecular markers (Y-chromosome, mtDNA, autosomal) in 10 populations. Analyses relied on different multivariate methods and correlation tests. RESULTS: Besides the expected isolation-by-distance-like patterns (with few local exceptions, likely related to sociocultural instances), we detected a significant and geography-independent association between dialects and surnames. As for molecular markers, only Y-chromosomal STRs seem to be associated with the dialects, although no significant result was obtained. No evidence for correlation between molecular markers and surnames was observed. CONCLUSION: Surnames act as cultural markers as do other words, although in this context they cannot be used as reliable proxies for genetic variability at a local scale.


Assuntos
DNA/análise , Variação Genética , Idioma , Nomes , Cultura , Humanos , Itália
9.
BMC Genomics ; 22(1): 623, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34407764

RESUMO

BACKGROUND: The low cost and rapidity of microsatellite analysis have led to the development of several markers for many species. Because in non-invasive genetics it is recommended to genotype individuals using few loci, generally a subset of markers is selected. The choice of different marker panels by different research groups studying the same population can cause problems and bias in data analysis. A priority issue in conservation genetics is the comparability of data produced by different labs with different methods. Here, we compared data from previous and ongoing studies to identify a panel of microsatellite loci efficient for the long-term monitoring of Apennine brown bears (Ursus arctos marsicanus), aiming at reducing genotyping uncertainty and allowing reliable individual identifications overtimes. RESULTS: We examined all microsatellite markers used up to now and identified 19 candidate loci. We evaluated the efficacy of 13 of the most commonly used loci analyzing 194 DNA samples belonging to 113 distinct bears selected from the Italian national biobank. We compared data from 4 different marker subsets on the basis of genotyping errors, allelic patterns, observed and expected heterozygosity, discriminatory powers, number of mismatching pairs, and probability of identity. The optimal marker set was selected evaluating the low molecular weight, the high discriminatory power, and the low occurrence of genotyping errors of each primer. We calibrated allele calls and verified matches among genotypes obtained in previous studies using the complete set of 13 STRs (Short Tandem Repeats), analyzing six invasive DNA samples from distinct individuals. Differences in allele-sizing between labs were consistent, showing a substantial overlap of the individual genotyping. CONCLUSIONS: The proposed marker set comprises 11 Ursus specific markers with the addition of cxx20, the canid-locus less prone to genotyping errors, in order to prevent underestimation (maximizing the discriminatory power) and overestimation (minimizing the genotyping errors) of the number of Apennine brown bears. The selected markers allow saving time and costs with the amplification in multiplex of all loci thanks to the same annealing temperature. Our work optimizes the available resources by identifying a shared panel and a uniform methodology capable of improving comparisons between past and future studies.


Assuntos
Repetições de Microssatélites , Ursidae , Alelos , Animais , DNA , Genótipo , Ursidae/genética
10.
Am J Phys Anthropol ; 175(3): 665-679, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33969895

RESUMO

OBJECTIVES: Genetic drift and admixture are driving forces in human evolution, but their concerted impact to population evolution in historical times and at a micro-geographic scale is poorly assessed. In this study we test a demographic model encompassing both admixture and drift to the case of social-cultural isolates such as the so-called "Commons." MATERIALS AND METHODS: Commons are peculiar institutions of medieval origins whose key feature is the tight relationship between population and territory, mediated by the collective property of shared resources. Here, we analyze the Y-chromosomal genetic structure of four Commons (for a total of 366 samples) from the Central and Eastern Padana plain in Northern Italy. RESULTS: Our results reveal that all these groups exhibit patterns of significant diversity reduction, peripheral/outlier position within the Italian/European genetic space and high frequency of Common-specific haplogroups. By explicitly testing different drift-admixture models, we show that a drift-only model is more probable for Central Padana Commons, while additional admixture (~20%) from external population around the same time of their foundation cannot be excluded for the Eastern ones. DISCUSSION: Building on these results, we suggest central Middle Ages as the most probable age of foundation for three of the considered Commons, the remaining one pointing to late antiquity. We conclude that an admixture-drift model is particularly useful for interpreting the genetic structure and recent demographic history of small-scale populations in which social-cultural features play a significant role.


Assuntos
Cromossomos Humanos Y , Deriva Genética , Cromossomos Humanos Y/genética , Variação Genética/genética , Genética Populacional , Haplótipos , Humanos , Itália
11.
Sci Rep ; 11(1): 3045, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542324

RESUMO

Calabrian Greeks are an enigmatic population that have preserved and evolved a unique variety of language, Greco, survived in the isolated Aspromonte mountain area of Southern Italy. To understand their genetic ancestry and explore possible effects of geographic and cultural isolation, we genome-wide genotyped a large set of South Italian samples including both communities that still speak Greco nowadays and those that lost the use of this language earlier in time. Comparisons with modern and ancient populations highlighted ancient, long-lasting genetic links with Eastern Mediterranean and Caucasian/Near-Eastern groups as ancestral sources of Southern Italians. Our results suggest that the Aspromonte communities might be interpreted as genetically drifted remnants that departed from such ancient genetic background as a consequence of long-term isolation. Specific patterns of population structuring and higher levels of genetic drift were indeed observed in these populations, reflecting geographic isolation amplified by cultural differences in the groups that still conserve the Greco language. Isolation and drift also affected the current genetic differentiation at specific gene pathways, prompting for future genome-wide association studies aimed at exploring trait-related loci that have drifted up in frequency in these isolated groups.


Assuntos
Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Genética Populacional , Genoma Humano/genética , DNA Antigo/análise , Deriva Genética , Genótipo , Grécia , Haplótipos/genética , História Antiga , Humanos , Itália , Idioma , População Branca/genética
12.
BMC Biol ; 18(1): 51, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32438927

RESUMO

BACKGROUND: The cline of human genetic diversity observable across Europe is recapitulated at a micro-geographic scale by variation within the Italian population. Besides resulting from extensive gene flow, this might be ascribable also to local adaptations to diverse ecological contexts evolved by people who anciently spread along the Italian Peninsula. Dissecting the evolutionary history of the ancestors of present-day Italians may thus improve the understanding of demographic and biological processes that contributed to shape the gene pool of European populations. However, previous SNP array-based studies failed to investigate the full spectrum of Italian variation, generally neglecting low-frequency genetic variants and examining a limited set of small effect size alleles, which may represent important determinants of population structure and complex adaptive traits. To overcome these issues, we analyzed 38 high-coverage whole-genome sequences representative of population clusters at the opposite ends of the cline of Italian variation, along with a large panel of modern and ancient Euro-Mediterranean genomes. RESULTS: We provided evidence for the early divergence of Italian groups dating back to the Late Glacial and for Neolithic and distinct Bronze Age migrations having further differentiated their gene pools. We inferred adaptive evolution at insulin-related loci in people from Italian regions with a temperate climate, while possible adaptations to pathogens and ultraviolet radiation were observed in Mediterranean Italians. Some of these adaptive events may also have secondarily modulated population disease or longevity predisposition. CONCLUSIONS: We disentangled the contribution of multiple migratory and adaptive events in shaping the heterogeneous Italian genomic background, which exemplify population dynamics and gene-environment interactions that played significant roles also in the formation of the Continental and Southern European genomic landscapes.


Assuntos
Evolução Molecular , Variação Genética , Genoma Humano , Arqueologia , DNA Antigo/análise , Humanos , Itália , População Branca
13.
Curr Biol ; 29(23): 4102-4107.e7, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31735678

RESUMO

Paternity testing using genetic markers has shown that extra-pair paternity (EPP) is common in many pair-bonded species [1, 2]. Evolutionary theory and empirical data show that extra-pair copulations can increase the fitness of males as well as females [3, 4]. This can carry a significant fitness cost for the social father, who then invests in rearing offspring that biologically are not his own [5]. In human populations, the incidence and correlates of extra-pair paternity remain highly contentious [2, 6, 7]. Here, we use a population-level genetic genealogy approach [6, 8] to reconstruct spatiotemporal patterns in human EPP rates. Using patrilineal genealogies from the Low Countries spanning a period of over 500 years and Y chromosome genotyping of living descendants, our analysis reveals that historical EPP rates, while low overall, were strongly impacted by socioeconomic and demographic factors. Specifically, we observe that estimated EPP rates among married couples varied by more than an order of magnitude, from 0.4% to 5.9%, and peaked among families with a low socioeconomic background living in densely populated cities of the late 19th century. Our results support theoretical predictions that social context can strongly affect the outcomes of sexual conflict in human populations by modulating the incentives and opportunities for engaging in extra-pair relationships [9-11]. These findings show how contemporary genetic data combined with in-depth genealogies open up a new window on the sexual behavior of our ancestors.


Assuntos
Paternidade , Bélgica , Feminino , Humanos , Luxemburgo , Masculino , Países Baixos , Comportamento Sexual
14.
PLoS One ; 14(10): e0214564, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31596857

RESUMO

A number of studies carried out since the early '70s has investigated the effects of isolation on genetic variation within and among human populations in diverse geographical contexts. However, no extensive analysis has been carried out on the heterogeneity among genomes within isolated populations. This issue is worth exploring since events of recent admixture and/or subdivision could potentially disrupt the genetic homogeneity which is to be expected when isolation is prolonged and constant over time. Here, we analyze literature data relative to 87,815 autosomal single-nucleotide polymorphisms, which were obtained from a total of 28 European populations. Our results challenge the traditional paradigm of population isolates as structured as genetically (and genomically) uniform entities. In fact, focusing on the distribution of variance of intra-population diversity measures across individuals, we show that the inter-individual heterogeneity of isolated populations is at least comparable to the open ones. More in particular, three small and highly inbred isolates (Sappada, Sauris and Timau in Northeastern Italy) were found to be characterized by levels of inter-individual heterogeneity largely exceeding that of all other populations, possibly due to relatively recent events of genetic introgression. Finally, we propose a way to monitor the effects of inter-individual heterogeneity in disease-gene association studies.


Assuntos
Bases de Dados de Ácidos Nucleicos , Polimorfismo de Nucleotídeo Único , População Branca/genética , Adulto , Feminino , Genética Populacional , Genética Humana , Humanos , Masculino
15.
Sci Rep ; 9(1): 9032, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227725

RESUMO

In the population genomics era, the study of Y-chromosome variability is still of the greatest interest for several fields ranging from molecular anthropology to forensics and genetic genealogy. In particular, mutation rates of Y-chromosomal Short Tandem Repeats markers (Y-STRs) are key parameters for different interdisciplinary applications. Among them, testing the patrilineal relatedness between individuals and calculating their Time of Most Recent Common Ancestors (TMRCAs) are of the utmost importance. To provide new valuable estimates and to address these issues, we typed 47 Y-STRs (comprising Yfiler, PowerPlex23 and YfilerPlus loci, the recently defined Rapidly Mutating [RM] panel and 11 additional markers often used in genetic genealogical applications) in 135 individuals belonging to 66 deep-rooting paternal genealogies from Northern Italy. Our results confirmed that the genealogy approach is an effective way to obtain reliable Y-STR mutation rate estimates even with a limited number of samples. Moreover, they showed that the impact of multi-step mutations and backmutations is negligible within the temporal scale usually adopted by forensic and genetic genealogy analyses. We then detected a significant association between the number of mutations within genealogies and observed TMRCAs. Therefore, we compared observed and expected TMRCAs by implementing a Bayesian procedure originally designed by Walsh (2001) and showed that the method yields a good performance (up to 96.72%), especially when using the Infinite Alleles Model (IAM).


Assuntos
Cromossomos Humanos Y , Repetições de Microssatélites/genética , Taxa de Mutação , Alelos , Humanos , Itália , Meiose/genética , Linhagem
16.
Mol Biol Evol ; 36(6): 1254-1269, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30895292

RESUMO

Extensive European and African admixture coupled with loss of Amerindian lineages makes the reconstruction of pre-Columbian history of Native Americans based on present-day genomes extremely challenging. Still open questions remain about the dispersals that occurred throughout the continent after the initial peopling from the Beringia, especially concerning the number and dynamics of diffusions into South America. Indeed, if environmental and historical factors contributed to shape distinct gene pools in the Andes and Amazonia, the origins of this East-West genetic structure and the extension of further interactions between populations residing along this divide are still not well understood. To this end, we generated new high-resolution genome-wide data for 229 individuals representative of one Central and ten South Amerindian ethnic groups from Mexico, Peru, Bolivia, and Argentina. Low levels of European and African admixture in the sampled individuals allowed the application of fine-scale haplotype-based methods and demographic modeling approaches. These analyses revealed highly specific Native American genetic ancestries and great intragroup homogeneity, along with limited traces of gene flow mainly from the Andes into Peruvian Amazonians. Substantial amount of genetic drift differentially experienced by the considered populations underlined distinct patterns of recent inbreeding or prolonged isolation. Overall, our results support the hypothesis that all non-Andean South Americans are compatible with descending from a common lineage, while we found low support for common Mesoamerican ancestors of both Andeans and other South American groups. These findings suggest extensive back-migrations into Central America from non-Andean sources or conceal distinct peopling events into the Southern Continent.


Assuntos
Genoma Humano , Migração Humana , Indígenas Sul-Americanos/genética , Fluxo Gênico , Variação Genética , Haplótipos , Humanos , Modelos Genéticos , Filogeografia , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , América do Sul
17.
Genes (Basel) ; 10(3)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30884759

RESUMO

Human longevity is a complex phenotype resulting from the combinations of context-dependent gene-environment interactions that require analysis as a dynamic process in a cohesive ecological and evolutionary framework. Genome-wide association (GWAS) and whole-genome sequencing (WGS) studies on centenarians pointed toward the inclusion of the apolipoprotein E (APOE) polymorphisms ε2 and ε4, as implicated in the attainment of extreme longevity, which refers to their effect in age-related Alzheimer's disease (AD) and cardiovascular disease (CVD). In this case, the available literature on APOE and its involvement in longevity is described according to an anthropological and population genetics perspective. This aims to highlight the evolutionary history of this gene, how its participation in several biological pathways relates to human longevity, and which evolutionary dynamics may have shaped the distribution of APOE haplotypes across the globe. Its potential adaptive role will be described along with implications for the study of longevity in different human groups. This review also presents an updated overview of the worldwide distribution of APOE alleles based on modern day data from public databases and ancient DNA samples retrieved from literature in the attempt to understand the spatial and temporal frame in which present-day patterns of APOE variation evolved.


Assuntos
Apolipoproteínas E/genética , Variação Genética , Longevidade , Genética Populacional , Haplótipos , Humanos , Herança Multifatorial
18.
Mob DNA ; 9: 28, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30147753

RESUMO

BACKGROUND: Transposable elements are biologically important components of eukaryote genomes. In particular, non-LTR retrotransposons (N-LTRrs) played a key role in shaping the human genome throughout evolution. In this study, we compared retrotransposon insertions differentially present in the genomes of Anatomically Modern Humans, Neanderthals, Denisovans and Chimpanzees, in order to assess the possible impact of retrotransposition in the differentiation of the human lineage. RESULTS: We first identified species-specific N-LTRrs and established their distribution in present day human populations. These analyses shortlisted a group of N-LTRr insertions that were found exclusively in Anatomically Modern Humans. These insertions are associated with an increase in the number of transcriptional/splicing variants of those genes they inserted in. The analysis of the functionality of genes containing human-specific N-LTRr insertions reflects changes that occurred during human evolution. In particular, the expression of genes containing the most recent N-LTRr insertions is enriched in the brain, especially in undifferentiated neurons, and these genes associate in networks related to neuron maturation and migration. Additionally, we identified candidate N-LTRr insertions that have likely produced new functional variants exclusive to modern humans, whose genomic loci show traces of positive selection. CONCLUSIONS: Our results strongly suggest that N-LTRr impacted our differentiation as a species, most likely inducing an increase in neural complexity, and have been a constant source of genomic variability all throughout the evolution of the human lineage.

19.
J Mol Evol ; 86(5): 311, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29943091

RESUMO

The original version of the article unfortunately contained tagging error in Given and Surname of all the authors.

20.
J Mol Evol ; 86(5): 303-310, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29855654

RESUMO

Transposable elements (TEs) play an essential role in shaping eukaryotic genomes and generating variability. Speciation and TE activity bursts could be strongly related in mammals, in which simple gradualistic models of differentiation do not account for the currently observed species variability. In order to test this hypothesis, we designed two parameters: the Density of insertion (DI) and the Relative rate of speciation (RRS). DI is the ratio between the number of TE insertions in a genome and its size, whereas the RRS is a conditional parameter designed to identify potential speciation bursts. Thus, by analyzing TE insertions in mammals, we defined the genomes as "hot" (high DI) and "cold" (low DI). Then, comparing TE activity among 29 taxonomical families of the whole Mammalia class, 16 intra-order pairs of mammalian species, and four superorders of Eutheria, we showed that taxa with high rates of speciation are associated with "hot" genomes, whereas taxa with low ones are associated with "cold" genomes. These results suggest a remarkable correlation between TE activity and speciation, also being consistent with patterns describing variable rates of differentiation and accounting for the different time frames of the speciation bursts.


Assuntos
Elementos de DNA Transponíveis/genética , Especiação Genética , Mamíferos/genética , Animais , Extinção Biológica , Mutagênese Insercional/genética , Filogenia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...