Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ALTEX ; 41(3): 425-438, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38641922

RESUMO

Animal models have historically been poor preclinical predictors of gastrointestinal (GI) directed therapeutic efficacy and drug-induced GI toxicity. Human stem and primary cell-derived culture systems are a major focus of efforts to create biologically relevant models that enhance preclinical predictive value of intestinal efficacy and toxicity. The inherent variability in stem cell-based cultures makes development of useful models a challenge; the stochastic nature of stem cell differentiation interferes with the ability to build and validate reproducible assays that query drug responses and pharmacokinetics. In this study, we aimed to characterize and reduce sources of variability in a complex stem cell-derived intestinal epithelium model, termed RepliGut® Planar, across cells from multiple human donors, cell lots, and passage numbers. Assessment criteria included barrier for­mation and integrity, gene expression, and cytokine responses. Gene expression and culture metric analyses revealed that controlling cell passage number reduces variability and maximizes physi­ological relevance of the model. In a case study where passage number was optimized, distinct cytokine responses were observed among four human donors, indicating that biological variability can be detected in cell cultures originating from diverse human sources. These findings highlight key considerations for designing assays that can be applied to additional primary cell-derived systems, as well as establish utility of the RepliGut® Planar platform for robust development of human-pre­dictive drug-response assays.


Animal models are frequently used as tools for studying gastrointestinal (GI) disease, but they inad­equately replicate the complexities of the human gut, making them poor predictors of how humans respond to new drugs. Models using human stem cells are closer to human GI physiology, but their responses are not uniform owing to variability in the stem cells. We looked for the sources of this variability in the primary stem-cell derived RepliGut® Planar model. We found that limiting how long the cells were kept in culture reduced their variability and improved the physiological relevance of the model. These findings highlight key assay design considerations that also can be applied to other primary cell-derived systems. Reliable and physiologically relevant cell-based models can reduce animal testing, improve research accuracy, and ensure new treatments are more relevant and effective for patients.


Assuntos
Mucosa Intestinal , Humanos , Mucosa Intestinal/citologia , Colo/citologia , Alternativas aos Testes com Animais , Técnicas de Cultura de Células/métodos , Células Cultivadas , Diferenciação Celular , Modelos Biológicos , Citocinas/metabolismo , Células-Tronco
2.
bioRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37790345

RESUMO

Animal models have historically been poor preclinical predictors of gastrointestinal (GI) directed therapeutic efficacy and drug-induced GI toxicity. Human stem and primary cell-derived culture systems are a major focus of efforts to create biologically relevant models that enhance preclinical predictive value of intestinal efficacy and toxicity. The inherent variability in stem-cell-based complex cultures makes development of useful models a challenge; the stochastic nature of stem-cell differentiation interferes with the ability to build and validate robust, reproducible assays that query drug responses and pharmacokinetics. In this study, we aimed to characterize and reduce potential sources of variability in a complex stem cell-derived intestinal epithelium model, termed RepliGut® Planar, across cells from multiple human donors, cell lots, and passage numbers. Assessment criteria included barrier formation and integrity, gene expression, and cytokine responses. Gene expression and culture metric analyses revealed that controlling for stem/progenitor-cell passage number reduces variability and maximizes physiological relevance of the model. After optimizing passage number, donor-specific differences in cytokine responses were observed in a case study, suggesting biologic variability is observable in cell cultures derived from multiple human sources. Our findings highlight key considerations for designing assays that can be applied to additional primary-cell derived systems, as well as establish utility of the RepliGut® Planar platform for robust development of human-predictive drug-response assays.

3.
Front Bioeng Biotechnol ; 9: 596154, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33634081

RESUMO

The biomechanical properties of the cornea and sclera are important in the onset and progression of multiple ocular pathologies and vary substantially between individuals, yet the source of this variation remains unknown. Here we identify genes putatively regulating corneoscleral biomechanical tissue properties by conducting high-fidelity ocular compliance measurements across the BXD recombinant inbred mouse set and performing quantitative trait analysis. We find seven cis-eQTLs and non-synonymous SNPs associating with ocular compliance, and show by RT-qPCR and immunolabeling that only two of the candidate genes, Smarce1 and Tns4, showed significant expression in corneal and scleral tissues. Both have mechanistic potential to influence the development and/or regulation of tissue material properties. This work motivates further study of Smarce1 and Tns4 for their role(s) in ocular pathology involving the corneoscleral envelope as well as the development of novel mouse models of ocular pathophysiology, such as myopia and glaucoma.

4.
Artigo em Inglês | MEDLINE | ID: mdl-31709244

RESUMO

The pressure-volume relationship of the eye is determined by the biomechanical properties of the corneoscleral shell and is classically characterised by Friedenwald's coefficient of ocular rigidity or, alternatively, by the ocular compliance (OC), defined as dV/dP. OC is important in any situation where the volume (V) or pressure (P) of the eye is perturbed, as occurs during several physiological and pathological processes. However, accurately measuring OC is challenging, particularly in rodents. We measured OC in 24 untreated enucleated eyes from 12 C57BL/6 mice using the iPerfusion system to apply controlled pressure steps, whilst measuring the time-varying flow rate into the eye. Pressure and flow data were analysed by a "Discrete Volume" (integrating the flow trace) and "Step Response" method (fitting an analytical solution to the pressure trace). OC evaluated at 13 mmHg was similar between the two methods (Step Response, 41 [37, 46] vs. Discrete Volume, 42 [37, 48] nl/mmHg; mean [95% CI]), although the Step Response Method yielded tighter confidence bounds on individual eyes. OC was tightly correlated between contralateral eyes (R 2 = 0.75, p = 0.0003). Following treatment with the cross-linking agent genipin, OC decreased by 40 [33, 47]% (p = 0.0001; N = 6, Step Response Method). Measuring OC provides a powerful tool to assess corneoscleral biomechanics in mice and other species.

5.
J R Soc Interface ; 16(159): 20190427, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31615330

RESUMO

Scleral stiffening has been proposed as a therapy for glaucoma and myopia. Previous in vivo studies have evaluated the efficacy of scleral stiffening after multiple treatments with a natural collagen crosslinker, genipin. However, multiple injections limit clinical translatability. Here, we examined whether scleral stiffening was maintained after four weeks following a single genipin treatment. Eyes from brown Norway rats were treated in vivo with a single 15 mM genipin retrobulbar injection, sham retrobulbar injection, or were left naive. Eyes were enucleated either 1 day or four weeks post-injection and underwent whole globe inflation testing. We assessed first principal Lagrange strain of the posterior sclera using digital image correlation as a proxy for scleral stiffness. Four weeks post-injection, genipin treatment resulted in a 58% reduction in scleral strain as compared to controls (p = 0.005). We conclude that a single in vivo injection of genipin effectively stiffened rat sclera for at least four weeks which motivates further functional studies and possible clinical translation of genipin-induced scleral stiffening.


Assuntos
Glaucoma , Iridoides/toxicidade , Miopia , Esclera , Animais , Glaucoma/induzido quimicamente , Glaucoma/diagnóstico por imagem , Glaucoma/metabolismo , Masculino , Miopia/induzido quimicamente , Miopia/diagnóstico por imagem , Miopia/metabolismo , Ratos , Esclera/diagnóstico por imagem , Esclera/metabolismo
6.
J Biomech ; 93: 204-208, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31311622

RESUMO

Glaucoma is the leading cause of irreversible blindness worldwide. Elevated intraocular pressure (IOP), the primary risk factor for glaucoma, is thought to induce abnormally high strains in optic nerve head (ONH) tissues, which ultimately result in retinal ganglion cell damage and vision loss. The mechanisms by which excessive deformations result in vision loss remain incompletely understood. The ability of computational and in vitro models of the ONH to provide insight into these mechanisms, in many cases, depends on our ability to replicate the physiological environment, which in turn requires knowledge of tissue biomechanical properties. The majority of mechanical data published to date regarding the ONH has been obtained from tensile testing, yet compression has been shown to be the main mode of deformation in the ONH under elevated IOP. We have thus tested pig and rat ONH tissue using unconfined cyclic compression. The material constants C1, obtained from fitting the stress vs. strain data with a neo-Hookean material model, were 428 [367, 488] Pa and 64 [53, 76] Pa (mean [95% Confidence Interval]) for pig and rat optic nerve head, respectively. Additionally, we investigated the effects of strain rate and tissue storage on C1 values. These data will inform future efforts to understand and replicate the in vivo biomechanical environment of the ONH.


Assuntos
Disco Óptico/fisiologia , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Glaucoma/fisiopatologia , Humanos , Pressão Intraocular/fisiologia , Masculino , Disco Óptico/patologia , Doenças do Nervo Óptico/fisiopatologia , Ratos , Células Ganglionares da Retina/patologia , Suínos
7.
PLoS One ; 14(5): e0215895, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31071122

RESUMO

The use of hydrogels in load bearing applications is often limited by insufficient toughness. 2-Hydroxyethyl methacrylate (HEMA) based hydrogels are appealing for translational work, as they are affordable and the use of HEMA is FDA approved. Furthermore, HEMA is photopolymerizable, providing spatiotemporal control over mechanical properties. We evaluated the ability of vinyl methacrylate (VM), allyl methacrylate (AM), and 3-(Acryloyloxy)-2-hydroxypropyl methacrylate (AHPM) to tune hydrogel toughness and Young's modulus. The crosslinkers were selected due to their heterobifunctionality (vinyl and methacrylate) and similar size and structure to EGDMA, which was shown previously to increase toughness as compared to longer crosslinkers. Vinyl methacrylate incorporation into HEMA hydrogels gave rise to hydrogels with Young's moduli spanning ranges for ligament to cartilage, with a peak toughness of 519 ± 70 kJ/m3 under physiological conditions. We report toughness (work of extension) as a function of modulus and equilibrium water content for all formulations. The hydrogels exhibited 80%-100% cell viability, which suggests they could be used in tissue engineering applications.


Assuntos
Materiais Biocompatíveis/química , Hidrogéis/química , Fenômenos Mecânicos , Metacrilatos/química , Materiais Biocompatíveis/farmacologia , Cartilagem/citologia , Cartilagem/efeitos dos fármacos , Humanos , Teste de Materiais , Metacrilatos/farmacologia , Processos Fotoquímicos , Polimerização , Água/química
8.
ACS Biomater Sci Eng ; 4(4): 1272-1284, 2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33418658

RESUMO

Trachea replacement for nonoperable defects remains an unsolved problem due to complications with stenosis and mechanical insufficiency. While native trachea has anisotropic mechanical properties, the vast majority of engineered constructs focus on uniform cartilaginous-like conduits. These conduits often lack quantitative mechanical analysis at the construct level, which limits analysis of functional outcomes in vivo, as well as comparisons across studies. This review aims to present a clear picture of native tracheal mechanics at the tissue and organ level, as well as loading conditions to establish design criteria for trachea replacements. We further explore the implications of failing to match native properties with regards to implant collapse, stenosis, and infection.

9.
ACS Biomater Sci Eng ; 3(12): 3222-3229, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33445364

RESUMO

There remains no routine treatment for congenital tracheal abnormalities affecting more than 1/3 of the length. Natural and artificial prostheses are plagued by mechanical failure and inconsistent outcomes. Mimicking native tissue mechanics in an engineered replacement may improve functional and patient outcomes. We synthesized tubular constructs comprising photo-cross-linked methyl acrylate-co-methyl methacrylate, p(MA-co-MMA), with patterned r- and z-axes in order to achieve mechanical properties similar to lamb tracheae. Hard and soft alternating bands, and a soft vertical section, mimic tracheal architecture. Patterned constructs were capable of 46% elastic longitudinal extension. The construct longitudinal composite modulus, 0.34 ± 0.09 MPa, was not significantly different from ovine tracheae. The superior of two geometries evaluated supports up to a 46% reduction of internal volume within the physiological range of transmural pressures. Thus, these patterned hydrogels yielded longitudinal elasticity and radial rigidity while allowing for radial deformation required for effective coughing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...