Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 13(1): 13536, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598247

RESUMO

The ability to model physiological systems through 3D neural in-vitro systems may enable new treatments for various diseases while lowering the need for challenging animal and human testing. Creating such an environment, and even more impactful, one that mimics human brain tissue under mechanical stimulation, would be extremely useful to study a range of human-specific biological processes and conditions related to brain trauma. One approach is to use human cerebral organoids (hCOs) in-vitro models. hCOs recreate key cytoarchitectural features of the human brain, distinguishing themselves from more traditional 2D cultures and organ-on-a-chip models, as well as in-vivo animal models. Here, we propose a novel approach to emulate mild and moderate traumatic brain injury (TBI) using hCOs that undergo strain rates indicative of TBI. We subjected the hCOs to mild (2 s[Formula: see text]) and moderate (14 s[Formula: see text]) loading conditions, examined the mechanotransduction response, and investigated downstream genomic effects and regulatory pathways. The revealed pathways of note were cell death and metabolic and biosynthetic pathways implicating genes such as CARD9, ENO1, and FOXP3, respectively. Additionally, we show a steeper ascent in calcium signaling as we imposed higher loading conditions on the organoids. The elucidation of neural response to mechanical stimulation in reliable human cerebral organoid models gives insights into a better understanding of TBI in humans.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Fenômenos Fisiológicos do Sistema Nervoso , Animais , Humanos , Mecanotransdução Celular , Encéfalo
3.
Adv Biosyst ; 4(10): e2000080, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32875741

RESUMO

The evolution of tissue on a chip systems holds promise for mimicking the response of biological functionality of physiological systems. One important direction for tissue on a chip approaches are neuron-based systems that could mimic neurological responses and lessen the need for in vivo experimentation. For neural research, more attention has been devoted recently to understanding mechanics due to issues in areas such as traumatic brain injury (TBI) and pain, among others. To begin to address these areas, a 3D Nerve Integrated Tissue on a Chip (NITC) approach combined with a Mechanical Excitation Testbed (MET) System is developed to impose external mechanical stimulation toward more realistic physiological environments. PC12 cells differentiated with nerve growth factor, which were cultured in a controlled 3D scaffolds, are used. The cells are labeled in a 3D NITC system with Fluo-4-AM to examine their calcium response under mechanical stimulation synchronized with image capture. Understanding the neural responses to mechanical stimulation beyond 2D systems is very important for neurological studies and future personalized strategies. This work will have implications in a diversity of areas including tissue-on-a-chip systems, biomaterials, and neuromechanics.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Técnicas de Cultura de Células , Dispositivos Lab-On-A-Chip , Mecanotransdução Celular/fisiologia , Animais , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Desenho de Equipamento , Neurônios/citologia , Células PC12 , Ratos , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...