Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 12527, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869244

RESUMO

Coastal deposits at Tofino, Ucluelet, and Port Alberni in Vancouver Island along the Cascadia subduction zone were re-examined to improve the earthquake history of the southwest coast of Canada. We found sand sheets interbedded within peat and mud, suggesting deposition by strong flows in a low-energy environment. Based on limiting maximum and minimum ages derived from plant macrofossils, the age of one of the sand sheets below the tsunami deposits of the great Cascadia earthquake in 1700 CE was estimated to be 1330-1430 CE. Onshore paleoseismic evidence has been documented in Vancouver Island, northern Washington, and northern Oregon during this period. However, the newly constrained age is between those of coseismic subsidence Y and W events in southern Washington, which have been recognized as the 1700 CE and the penultimate Cascadia earthquakes, respectively. Moreover, the new age partly overlaps with the age of offshore paleoseismic evidence for T2, interpreted to have originated from the penultimate Cascadia earthquake, based on offshore turbidite records. The new chronology prior to the 1700 CE Cascadia tsunami deposit from Vancouver Island contributes to a better understand of the timing of the penultimate Cascadia earthquake.

2.
J Mt Sci ; 18(1): 1-20, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33456447

RESUMO

This paper presents a novel approach to continuously monitor very slow-moving translational landslides in mountainous terrain using conventional and experimental differential global navigation satellite system (d-GNSS) technologies. A key research question addressed is whether displacement trends captured by a radio-frequency "mobile" d-GNSS network compare with the spatial and temporal patterns in activity indicated by satellite interferometric synthetic aperture radar (InSAR) and unmanned aerial vehicle (UAV) photogrammetry. Field testing undertaken at Ripley Landslide, near Ashcroft in south-central British Columbia, Canada, demonstrates the applicability of new geospatial technologies to monitoring ground control points (GCPs) and railway infrastructure on a landslide with small and slow annual displacements (<10 cm/yr). Each technique records increased landslide activity and ground displacement in late winter and early spring. During this interval, river and groundwater levels are at their lowest levels, while ground saturation rapidly increases in response to the thawing of surficial earth materials, and the infiltration of snowmelt and runoff occurs by way of deep-penetrating tension cracks at the head scarp and across the main slide body. Research over the last decade provides vital information for government agencies, national railway companies, and other stakeholders to understand geohazard risk, predict landslide movement, improve the safety, security, and resilience of Canada's transportation infrastructure; and reduce risks to the economy, environment, natural resources, and public safety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...