Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 6(3): 871-880, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33720705

RESUMO

Acetone is a metabolic byproduct found in the exhaled breath and can be measured to monitor the metabolic degree of ketosis. In this state, the body uses free fatty acids as its main source of fuel because there is limited access to glucose. Monitoring ketosis is important for type I diabetes patients to prevent ketoacidosis, a potentially fatal condition, and individuals adjusting to a low-carbohydrate diet. Here, we demonstrate that a chemiresistor fabricated from oxidized single-walled carbon nanotubes functionalized with titanium dioxide (SWCNT@TiO2) can be used to detect acetone in dried breath samples. Initially, due to the high cross sensitivity of the acetone sensor to water vapor, the acetone sensor was unable to detect acetone in humid gas samples. To resolve this cross-sensitivity issue, a dehumidifier was designed and fabricated to dehydrate the breath samples. Sensor response to the acetone in dried breath samples from three volunteers was shown to be linearly correlated with the two other ketone bodies, acetoacetic acid in urine and ß-hydroxybutyric acid in the blood. The breath sampling and analysis methodology had a calculated acetone detection limit of 1.6 ppm and capable of detecting up to at least 100 ppm of acetone, which is the dynamic range of breath acetone for someone with ketosis. Finally, the application of the sensor as a breath acetone detector was studied by incorporating the sensor into a handheld prototype breathalyzer.


Assuntos
Nanotubos de Carbono , Acetona , Testes Respiratórios , Humanos , Corpos Cetônicos , Titânio
2.
ACS Sens ; 4(8): 2084-2093, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31321969

RESUMO

Semiconductor-enriched single-walled carbon nanotubes (s-SWCNTs) have potential for application as a chemiresistor for the detection of breath compounds, including tetrahydrocannabinol (THC), the main psychoactive compound found in the marijuana plant. Herein we show that chemiresistor devices fabricated from s-SWCNT ink using dielectrophoresis can be incorporated into a hand-held breathalyzer with sensitivity toward THC generated from a bubbler containing analytical standard in ethanol and a heated sample evaporator that releases compounds from steel wool. The steel wool was used to capture THC from exhaled marijuana smoke. The generation of the THC from the bubbler and heated breath sample chamber was confirmed using ultraviolet-visible absorption spectroscopy and mass spectrometry, respectively. Enhanced selectivity toward THC over more volatile breath components such as CO2, water, ethanol, methanol, and acetone was achieved by delaying the sensor reading to allow for the desorption of these compounds from the chemiresistor surface. Additionally, machine learning algorithms were utilized to improve the selective detection of THC with better accuracy at increasing quantities of THC delivered to the chemiresistor.


Assuntos
Técnicas Biossensoriais , Testes Respiratórios , Dronabinol/análise , Técnicas Eletroquímicas , Nanotubos de Carbono/química , Humanos , Aprendizado de Máquina , Estrutura Molecular , Semicondutores
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 2895-2899, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946496

RESUMO

Development of fast methods to conduct in silico experiments using computational models of cellular signaling is a promising approach toward advances in personalized medicine. However, software-based cellular network simulation has runtimes plagued by wasted CPU cycles and unnecessary processes. Hardware emulation affords substantial speedup, but prior attempts at hardware implementation of biological simulators have been limited in scope and have suffered from inaccuracies due to poor random number generation. In this work, we propose several simulation schemes utilizing novel random update index generation techniques for step-based and round-based stochastic simulations of cellular networks. Our results show improved runtimes while maintaining simulation accuracy compared to software implementations.


Assuntos
Algoritmos , Comunicação Celular , Simulação por Computador , Software , Computadores , Transdução de Sinais
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 5030-5033, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30441471

RESUMO

The number of published results in biology and medicine is growing at an exceeding rate, and thus, extracting relevant information for building useful models is becoming very laborious. Furthermore, with the newly published information, previously built models need to be extended and updated, and with the voluminous literature, it is necessary to automate the model extension process. In this work, we introduce a methodology for extending logical models of cell signaling networks using a Genetic Algorithm (GA). The proposed procedure is developed to optimally search for a subset of biological interactions that extend logical models while preserving their desired behavior. To evaluate the effectiveness of the proposed methodology, we randomly removed a subset of elements from an existing T cell differentiation model, and mixed them with randomly created interactions to mimic the output of literature reading. We then used the GA to search for the extensions that optimally reconstructed the model. The simulation results showed that the GA was able to find a set of extensions that preserved the desired behavior of the model with fewer elements than the original model. The results demonstrate that the GA is an efficient tool for model extension, and suggest that it can be used for model reduction as well.


Assuntos
Algoritmos , Diferenciação Celular , Transdução de Sinais , Linfócitos T/citologia , Simulação por Computador , Humanos , Modelos Biológicos
5.
IEEE J Transl Eng Health Med ; 5: 2700111, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29018637

RESUMO

The design of effective transcutaneous systems demands the consideration of inevitable variations in tissue characteristics, which vary across body areas, among individuals, and over time. The purpose of this paper was to design and evaluate several printed antenna topologies for ultrahigh frequency (UHF) transcutaneous power transfer to implantable medical devices, and to investigate the effects of variations in tissue properties on dipole and loop topologies. Here, we show that a loop antenna topology provides the greatest achievable gain with the smallest implanted antenna, while a dipole system provides higher impedance for conjugate matching and the ability to increase gain with a larger external antenna. In comparison to the dipole system, the loop system exhibits greater sensitivity to changes in tissue structure and properties in terms of power gain, but provides higher gain when the separation is on the order of the smaller antenna dimension. The dipole system was shown to provide higher gain than the loop system at greater implant depths for the same implanted antenna area, and was less sensitive to variations in tissue properties and structure in terms of power gain at all investigated implant depths. The results show the potential of easily-fabricated, low-cost printed antenna topologies for UHF transcutaneous power, and the importance of environmental considerations in choosing the antenna topology.

6.
Sensors (Basel) ; 16(3)2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26999154

RESUMO

Wireless energy transfer is a broad research area that has recently become applicable to implantable medical devices. Wireless powering of and communication with implanted devices is possible through wireless transcutaneous energy transfer. However, designing wireless transcutaneous systems is complicated due to the variability of the environment. The focus of this review is on strategies to sense and adapt to environmental variations in wireless transcutaneous systems. Adaptive systems provide the ability to maintain performance in the face of both unpredictability (variation from expected parameters) and variability (changes over time). Current strategies in adaptive (or tunable) systems include sensing relevant metrics to evaluate the function of the system in its environment and adjusting control parameters according to sensed values through the use of tunable components. Some challenges of applying adaptive designs to implantable devices are challenges common to all implantable devices, including size and power reduction on the implant, efficiency of power transfer and safety related to energy absorption in tissue. Challenges specifically associated with adaptation include choosing relevant and accessible parameters to sense and adjust, minimizing the tuning time and complexity of control, utilizing feedback from the implanted device and coordinating adaptation at the transmitter and receiver.


Assuntos
Fontes de Energia Elétrica , Próteses e Implantes , Tecnologia sem Fio , Humanos , Ondas de Rádio , Telemetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...