Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38132907

RESUMO

Membrane-based Polymers of Intrinsic Microporosity (PIMs) are promising candidates for energy-efficient industrial gas separations, especially for the separation of carbon dioxide over methane (CO2/CH4) and carbon dioxide over nitrogen (CO2/N2) for natural gas/biogas upgrading and carbon capture from flue gases, respectively. Compared to other separation techniques, membrane separations offer potential energy and cost savings. Ultra-permeable PIM-based polymers are currently leading the trade-off between permeability and selectivity for gas separations, particularly in CO2/CH4 and CO2/N2. These membranes show a significant improvement in performance and fall within a linear correlation on benchmark Robeson plots, which are parallel to, but significantly above, the CO2/CH4 and CO2/N2 Robeson upper bounds. This improvement is expected to enhance the credibility of polymer membranes for CO2 separations and stimulate further research in polymer science and applied engineering to develop membrane systems for these CO2 separations, which are critical to energy and environmental sustainability. This review aims to highlight the state-of-the-art strategies employed to enhance gas separation performances in PIM-based membranes while also mitigating aging effects. These strategies include chemical post-modification, crosslinking, UV and thermal treatment of PIM, as well as the incorporation of nanofillers in the polymeric matrix.

2.
Membranes (Basel) ; 12(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36557169

RESUMO

Membranes with high CO2 solubility are essential for developing a separation technology with low carbon footprint. To this end, physical blend membranes of [BMIM][Ac] and [BMIM][Succ] as Ionic Liquids (ILs) and PIM-1 as the polymer were prepared trying to combine the high permeability properties of PIM-1 with the high CO2 solubility of the chosen ILs. Membranes with a PIM-1/[BMIM][Ac] 4/1 ratio nearly double their CO2 solubility at 0.8 bar (0.86 cm3 (STP)/cm3 cmHg), while other ratios still maintain similar solubilities to PIM-1 (0.47 cm3 (STP)/cm3 cmHg). Moreover, CO2 permeability of PIM-1/[BMIM][Ac] blended membranes were between 1050 and 2090 Barrer for 2/1 and 10/1 ratio, lower than PIM-1 membrane, but still highly permeable. The here presented self-standing and mechanically resistant blend membranes have yet a lower permeability compared to PIM-1 yet an improved CO2 solubility, which eventually will translate in higher CO2/N2 selectivity. These promising preliminary results will allow us to select and optimize the best performing PIM-1/ILs blends to develop outstanding membranes for an improved gas separation technology.

3.
ACS Appl Mater Interfaces ; 14(37): 42144-42152, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36084313

RESUMO

With the spread of alternative energy plants, electrolysis processes are becoming the protagonists of the future industrial generation. The technology readiness level for the electrochemical reduction of carbon dioxide is still low and is largely based on precious metal resources. In the present work, tin ions are anchored on a polyaniline matrix, via a sonochemical synthesis, forming a few atomic layers of chlorine-doped SnO2 with a total loading of tin atom load of only 7 wt %. This catalyst is able to produce formate (HCOO-) with great selectivity, exceeding 72% of Faradaic efficiency in the first hour of testing in 1 M KHCO3 electrolyte, with a current density of more than 50 mA cm-2 in a 2 M KHCO3 electrolyte flow cell setup. Catalyst stability tests show a stable production of HCOO- during 6 h of measurement, accumulating an overall TONHCOO- of more than 10,000 after 16 h of continuous formate production. This strategy is competitive in drastically reducing the amount of metal required for the overall catalysis.

4.
ACS Omega ; 6(31): 20205-20217, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34395971

RESUMO

Miniaturized low-cost sensors for volatile organic compounds (VOCs) have the potentiality to become a fundamental tool for indoor and outdoor air quality monitoring, to significantly improve everyday life. Layered double hydroxides (LDHs) belong to the class of anionic clays and are largely employed for NO x detection, while few results are reported on VOCs. In this work, a novel LDH coprecipitation method is proposed. For the first time, a study comparing four LDHs (ZnAl-Cl, ZnFe-Cl, ZnAl-NO3, and MgAl-NO3) is carried out to investigate the sensing performances. As explored through several microscopy and spectroscopy analyses, LDHs show a morphology characterized by a large surface area and a three-dimensional hierarchical flowerlike architecture with micro- and nanopores that induce a fast diffusion and highly effective surface interaction of the target gases. The fabricated sensors, operating at room temperature, are able to reversibly and selectively detect acetone, ethanol, ammonia, and chlorine vapors, reaching significant sensing response values up to 6% at 21 °C. The results demonstrate that by changing the LDHs' composition, it is possible to modulate the sensitivity and selectivity of the sensor, helping the discrimination of different analytes, and the consequent integration on a sensor array paves the way for electronic nose development.

5.
Biotechnol Biofuels ; 14(1): 13, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413601

RESUMO

BACKGROUND: Plastic plays a crucial role in everyday life of human living, nevertheless it represents an undeniable source of land and water pollution. Polyhydroxybutyrate (PHB) is a bio-based and biodegradable polyester, which can be naturally produced by microorganisms capable of converting and accumulating carbon as intracellular granules. Hence, PHB-producing strains stand out as an alternative source to fossil-derived counterparts. However, the extraction strategy affects the recovery efficiency and the quality of PHB. In this study, PHB was produced by a genetically modified Escherichia coli strain and successively extracted using dimethyl carbonate (DMC) and ethanol as alternative solvent and polishing agent to chloroform and hexane. Eventually, a Life Cycle Assessment (LCA) study was performed for evaluating the environmental and health impact of using DMC. RESULTS: Extraction yield and purity of PHB obtained via DMC, were quantified, and compared with those obtained via chloroform-based extraction. PHB yield values from DMC-based extraction were similar to or higher than those achieved by using chloroform (≥ 67%). To optimize the performance of extraction via DMC, different experimental conditions were tested, varying the biomass state (dry or wet) and the mixing time, in presence or in absence of a paper filter. Among 60, 90, 120 min, the mid-value allowed to achieve high extraction yield, both for dry and wet biomass. Physical and molecular dependence on the biomass state and solvent/antisolvent choice was established. The comparative LCA analysis promoted the application of DMC/ethanol rather than chloroform/hexane, as the best choice in terms of health prevention. However, an elevated impact score was achieved by DMC in the environmental-like categories in contrast with a minor contribution by its counterpart. CONCLUSION: The multifaceted exploration of DMC-based PHB extraction herein reported extends the knowledge of the variables affecting PHB purification process. This work offers novel and valuable insights into PHB extraction process, including environmental aspects not discussed so far. The findings of our research question the DMC as a green solvent, though also the choice of the antisolvent can influence the impact on the examined categories.

6.
Environ Pollut ; 267: 115609, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33254724

RESUMO

Plastics pollution has been recognized as a serious environmental problem. Nevertheless, new plastic uses, and applications are still increasing. Among these new applications, three-dimensional resin printers have increased their use and popularity around the world showing a vertiginous annual-sales growth. However, this technology is also the origin of residues generation from the alcohol cleaning procedure at the end of each printing. This alcohol/resin mixture can originate unintentionally very small plastic particles that usually are not correctly disposed, and as consequence, could be easily released to the environment. In this work, the nanoparticle generation from 3D printer's cleaning procedure and their physicochemical characterization is reported. Nano-sized plastic particles are easily formed when the resin residues are dissolved in alcohol and placed under UV radiation from sunlight. These nanoparticles can agglomerate in seawater showing an average hydrodynamic diameter around 1 µm, whereas the same nanoparticles remain dispersed in ultrapure water, showing a hydrodynamic diameter of ≈300 nm. The formed nanoparticles showed an isoelectric point close to pH 2, which can facilitate their interaction with other positively charged pollutants. Thus, these unexpected plastic nanoparticles can become an environmental issue and public health risk.


Assuntos
Poluentes Ambientais , Nanopartículas , Poluentes Químicos da Água , Animais , Poluição Ambiental , Etanol , Microplásticos , Plásticos
7.
Front Neurosci ; 11: 70, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261048

RESUMO

Here we provide the state-of-the-art of bioelectronic interfacing between biological neuronal systems and artificial components, focusing the attention on the potentiality offered by intrinsically neuromorphic synthetic devices based on Resistive Switching (RS). Neuromorphic engineering is outside the scopes of this Perspective. Instead, our focus is on those materials and devices featuring genuine physical effects that could be sought as non-linearity, plasticity, excitation, and extinction which could be directly and more naturally coupled with living biological systems. In view of important applications, such as prosthetics and future life augmentation, a cybernetic parallelism is traced, between biological and artificial systems. We will discuss how such intrinsic features could reduce the complexity of conditioning networks for a more natural direct connection between biological and synthetic worlds. Putting together living systems with RS devices could represent a feasible though innovative perspective for the future of bionics.

8.
Nanotechnol Sci Appl ; 9: 1-13, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26811673

RESUMO

Printed electronics will bring to the consumer level great breakthroughs and unique products in the near future, shifting the usual paradigm of electronic devices and circuit boards from hard boxes and rigid sheets into flexible thin layers and bringing disposable electronics, smart tags, and so on. The most promising tool to achieve the target depends upon the availability of nanotechnology-based functional inks. A certain delay in the innovation-transfer process to the market is now being observed. Nevertheless, the most widely diffused product, settled technology, and the highest sales volumes are related to the silver nanoparticle-based ink market, representing the best example of commercial nanotechnology today. This is a compact review on synthesis routes, main properties, and practical applications.

9.
Carbohydr Polym ; 119: 78-84, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25563947

RESUMO

Isosorbide is a non-toxic biodegradable diol derived from bio-based feedstock. It can be used for preparing thermoplastic starch through a semi-industrial process of extrusion. Isosorbide allows some technological advantages with respect to classical plasticizers: namely, direct mixing with starch, energy savings for the low processing temperature required and lower water uptake. Indeed, maize starch was directly mixed with the solid plasticizer and direct fed in the main hopper of a co-rotating twin screw extruder. Starch plasticization was assessed by X-ray diffraction (XRD) and dynamic-mechanical analysis (DMTA). Oxygen permeability, water uptake and mechanical properties were measured at different relative humidity (R.H.) values. These three properties turned out to be highly depending on the R.H. No retrogradation and changing of the material properties were occurred from XRD and DMTA after 9 months.


Assuntos
Isossorbida/química , Plastificantes/química , Plásticos/química , Amido/química , Temperatura , Módulo de Elasticidade , Glicerol/química , Oxigênio/química , Permeabilidade , Termogravimetria , Água/química , Difração de Raios X , Zea mays/química
10.
J Appl Biomater Funct Mater ; 13(1): 1-9, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24700263

RESUMO

PURPOSE: The accurate selection of materials and the fine tuning of their properties represent a fundamental aspect in the realization of new active systems able to produce actuating forces, such as artificial muscles. In this regard, exciting opportunities for the design of new advanced systems are offered by materials belonging to the emerging class of functional polymers: exploiting their actuation response, specific devices can be realized. Along this direction, materials showing either shape-memory effect (SME) or shape-change effect (SCE) have been the subject of extensive studies aimed at designing of actuators as artificial muscles. Here, we concisely review active polymers in terms of properties and main applications in artificial muscle design. STRUCTURE: The main aspects related to material properties in both shape-memory polymers (SMPs) and electroactive polymers (EAPs) are reviewed, based on recent scientific literature. SME in thermally activated SMPs is presented by preliminarily providing a definition that encompasses the new theories regarding their fundamental properties. EAPs are briefly presented, describing the working mechanisms and highlighting the main properties and drawbacks, in view of their application as actuators. For both classes of materials, some key examples of effective application in artificial muscles are offered. OUTLOOK: The potential in polymer architecture design for the fabrication of actively moving systems is described to give a perspective on the main achievements and new research activities.


Assuntos
Órgãos Artificiais , Materiais Biomiméticos/química , Modelos Biológicos , Músculos , Polímeros/química , Animais , Humanos
11.
Mater Sci Eng C Mater Biol Appl ; 32(6): 1331-51, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24364930

RESUMO

Poly(butylene adipate-co-terephthalate) (PBAT) based nanocomposites were prepared by melt blending PBAT with 5 and 10 wt.% of clay nanoparticles (unmodified and modified montmorillonites, unmodified and modified fluoro-hectorites, and unmodified sepiolites). All nanocomposites showed a good level of clay distribution and dispersion into PBAT, especially nanocomposites with high clay chemical affinity with the polymer matrix. DSC results showed that addition of layered silicates slightly hindered kinetics and extent of crystallization of PBAT; however, sepiolite particles were able to promote polymer crystallization kinetics and the transformation of the PBAT crystal structure to a more ordered form. Similar increases in the thermal stability of PBAT in nitrogen and air were obtained upon addition of all clays, due to a barrier effect of the clays toward polymer decomposition product ablation. Preliminary biocompatibility tests indicated that PBAT based materials with 10% clay content have good biological safety and display almost no cytotoxicity. The addition of all nanofillers increased the hardness of PBAT matrix. The DMA analysis showed that all nanocomposites presented higher E' values than neat PBAT, indicating that addition of clays improved the mechanical properties of PBAT. For layered silicate nanocomposites, the main influencing factors on the thermo-mechanical properties appeared to be the aspect ratio and dispersion of clay nanoplatelets, rather than polymer/clay chemical affinity. The highest E' values of sepiolite based nanocomposites make this nanoparticle the most attractive material for tissue engineering and environmental industrial applications.


Assuntos
Nanocompostos/química , Poliésteres/química , Silicatos de Alumínio/química , Animais , Materiais Biocompatíveis/química , Linhagem Celular , Argila , Cristalização , Dureza , Cinética , Camundongos , Nanopartículas/química , Polímeros/química , Silicatos/química
12.
Biomacromolecules ; 11(11): 2919-26, 2010 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-20942482

RESUMO

The importance of photooxidation in promoting formation of anhydride functional groups and thus promoting hydrolysis/biodegradation of polylactic acid and PLA nanocomposites were elucidated. PLA-based nanocomposites were prepared by adding 5% wt filler content of sodium montmorillonite (ClNa), sodium montmorillonite partially exchanged with Fe(III) (ClFe), organically modified montmorillonite (Cl20A), unmodified sepiolite (SEP), and fumed silica (SiO2). The pure PLA and nanocomposites were UV-light irradiated in artificial accelerated conditions representative of solar irradiation (λ > 300 nm) at 60 °C in air. The chemical modifications resulting from photooxidation were followed by IR and UV-visible spectroscopies. The infrared analyses of PLA photooxidation show the formation of a band at 1845 cm(-1) due to the formation of anhydrides. A photooxidation mechanism based on hydroperoxide decomposition is proposed. The mechanism proposed is confirmed by an increase in anhydride formation rate: the main responsible for this acceleration was identified as transition metals contained in the nanofillers as impurities and involved in the catalytic hydroperoxide decomposition.


Assuntos
Anidridos/síntese química , Ácido Láctico/química , Nanocompostos/química , Polímeros/química , Anidridos/química , Oxirredução , Processos Fotoquímicos , Poliésteres , Raios Ultravioleta
13.
Chem Commun (Camb) ; (20): 2600-2, 2005 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-15900340

RESUMO

New hybrid nanocomposites based on a methacrylate functionalized titanium-oxo cluster as nano-cross-linker show improved mechanical properties, optical transparency and photochromic activity.


Assuntos
Nanoestruturas/química , Compostos Organometálicos/química , Titânio/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...