Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
2.
Sci Rep ; 13(1): 18736, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907514

RESUMO

During atherosclerotic plaque formation, smooth muscle cells (SMCs) switch from a contractile/differentiated to a synthetic/dedifferentiated phenotype. We previously isolated differentiated spindle-shaped (S) and dedifferentiated rhomboid (R) SMCs from porcine coronary artery. R-SMCs express S100A4, a calcium-binding protein. We investigated the role of apelin in this phenotypic conversion, as well as its relationship with S100A4. We found that apelin was highly expressed in R-SMCs compared with S-SMCs. We observed a nuclear expression of apelin in SMCs within experimentally-induced intimal thickening of the porcine coronary artery and rat aorta. Plasmids targeting apelin to the nucleus (N. Ap) and to the secretory vesicles (S. Ap) were transfected into S-SMCs where apelin was barely detectable. Both plasmids induced the SMC transition towards a R-phenotype. Overexpression of N. Ap, and to a lesser degree S. Ap, led to a nuclear localization of S100A4. Stimulation of S-SMCs with platelet-derived growth factor-BB, known to induce the transition toward the R-phenotype, yielded the direct interaction and nuclear expression of both apelin and S100A4. In conclusion, apelin induces a SMC phenotypic transition towards the synthetic phenotype. These results suggest that apelin acts via nuclear re-localization of S100A4, raising the possibility of a new pro-atherogenic relationship between apelin and S100A4.


Assuntos
Aterosclerose , Animais , Ratos , Apelina/genética , Apelina/metabolismo , Aterosclerose/metabolismo , Movimento Celular , Células Cultivadas , Miócitos de Músculo Liso/metabolismo , Fenótipo , Suínos
3.
Front Med (Lausanne) ; 10: 1191205, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37706027

RESUMO

Background: Knowledge about lung development or lung disease is mainly derived from data extrapolated from mouse models. This has obvious drawbacks in developmental diseases, particularly due to species differences. Our objective is to describe the development of complementary analysis methods that will allow a better understanding of the molecular mechanisms involved in the pathogenesis of rare congenital diseases. Methods: Paraffin-embedded human pediatric and fetal lung samples were laser microdissected to enrich different lung regions, namely, bronchioli or alveoli. These samples were analyzed by data-independent acquisition-based quantitative proteomics, and the lung structures were subsequently compared. To confirm the proteomic data, we employed an optimized Sequential ImmunoPeroxidase Labeling and Erasing (SIMPLE) staining for specific proteins of interest. Results: By quantitative proteomics, we identified typical pulmonary proteins from being differentially expressed in different regions. While the receptor for advanced glycation end products (RAGE) and the surfactant protein C (SFTPC) were downregulated, tubulin beta 4B (TUBB4B) was upregulated in bronchioli, compared to alveoli. In fetal tissues, CD31 was downregulated in fetal bronchioli compared to canaliculi. Moreover, we confirmed their presence using SIMPLE staining. Some expected proteins did not show up in the proteomic data, such as SOX-9, which was only detected by means of immunohistochemistry in the SIMPLE analysis. Conclusion: Our data underline the robustness and applicability of this type of experimental approach, especially for rare paraffin-embedded tissue samples. It also strengthens the importance of these methods for future studies, particularly when considering developmental lung diseases, such as congenital lung anomalies.

4.
Eur Heart J ; 44(32): 3040-3058, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37439553

RESUMO

Patients with severe infections and a pre-existing indication for antithrombotic therapy, i.e. antiplatelet agents, anticoagulant drugs, or their combinations, require integrated clinical counselling among coagulation, infectious disease, and cardiology specialists, due to sepsis-induced coagulopathy that frequently occurs. Bacterial and viral pathogens constitute an increasing threat to global public health, especially for patients with ongoing antithrombotic treatment who have a high risk of thrombotic recurrences and high susceptibility to severe infections with increased morbidity and mortality. Similarly, sepsis survivors are at increased risk for major vascular events. Coagulopathy, which often complicates severe infections, is associated with a high mortality and obligates clinicians to adjust antithrombotic drug type and dosing to avoid bleeding while preventing thrombotic complications. This clinical consensus statement reviews the best available evidence to provide expert opinion and statements on the management of patients hospitalized for severe bacterial or viral infections with a pre-existing indication for antithrombotic therapy (single or combined), in whom sepsis-induced coagulopathy is often observed. Balancing the risk of thrombosis and bleeding in these patients and preventing infections with vaccines, if available, are crucial to prevent events or improve outcomes and prognosis.


Assuntos
Aterosclerose , Sepse , Trombose , Humanos , Fibrinolíticos/uso terapêutico , Anticoagulantes/uso terapêutico , Trombose/tratamento farmacológico , Trombose/etiologia , Trombose/prevenção & controle , Hemorragia/induzido quimicamente , Aterosclerose/tratamento farmacológico , Hemostasia , Sepse/complicações , Sepse/tratamento farmacológico , Biologia
5.
Redox Biol ; 60: 102609, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36708644

RESUMO

Differentiation of fibroblasts to myofibroblasts is governed by the transforming growth factor beta (TGF-ß) through a mechanism involving redox signaling and generation of reactive oxygen species (ROS). Myofibroblasts synthesize proteins of the extracellular matrix (ECM) and display a contractile phenotype. Myofibroblasts are predominant contributors of wound healing and several pathological states, including fibrotic diseases and cancer. Inhibition of the ROS-generating enzyme NADPH oxidase 4 (NOX4) has been proposed to mitigate fibroblast to myofibroblast differentiation and to offer a therapeutic option for the treatment of fibrotic diseases. In this study, we addressed the role of NOX4 in physiological wound healing and in TGF-ß-induced myofibroblast differentiation. We explored the phenotypic changes induced by TGF-ß in primary skin fibroblasts isolated from Nox4-deficient mice by immunofluorescence, Western blotting and RNA sequencing. Mice deficient for Cyba, the gene coding for p22phox, a key subunit of NOX4 were used for confirmatory experiments as well as human primary skin fibroblasts. In vivo, the wound healing was similar in wild-type and Nox4-deficient mice. In vitro, despite a strong upregulation following TGF-ß treatment, Nox4 did not influence skin myofibroblast differentiation although a putative NOX4 inhibitor GKT137831 and a flavoprotein inhibitor diphenylene iodonium mitigated this mechanism. Transcriptomic analysis revealed upregulation of the mitochondrial protein Ucp2 and the stress-response protein Hddc3 in Nox4-deficient fibroblasts, which had however no impact on fibroblast bioenergetics. Altogether, we provide extensive evidence that NOX4 is dispensable for wound healing and skin fibroblast to myofibroblast differentiation, and suggest that another H2O2-generating flavoprotein drives this mechanism.


Assuntos
Peróxido de Hidrogênio , Miofibroblastos , Animais , Humanos , Camundongos , Diferenciação Celular , Fibroblastos/metabolismo , Fibrose , Peróxido de Hidrogênio/metabolismo , Miofibroblastos/metabolismo , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1 , Cicatrização
6.
Eur Heart J ; 44(14): 1216-1230, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36478058

RESUMO

The advent of single-cell biology opens a new chapter for understanding human biological processes and for diagnosing, monitoring, and treating disease. This revolution now reaches the field of cardiovascular disease (CVD). New technologies to interrogate CVD samples at single-cell resolution are allowing the identification of novel cell communities that are important in shaping disease development and direct towards new therapeutic strategies. These approaches have begun to revolutionize atherosclerosis pathology and redraw our understanding of disease development. This review discusses the state-of-the-art of single-cell analysis of atherosclerotic plaques, with a particular focus on human lesions, and presents the current resolution of cellular subpopulations and their heterogeneity and plasticity in relation to clinically relevant features. Opportunities and pitfalls of current technologies as well as the clinical impact of single-cell technologies in CVD patient care are highlighted, advocating for multidisciplinary and international collaborative efforts to join the cellular dots of CVD.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Placa Aterosclerótica , Humanos , Aterosclerose/patologia , Placa Aterosclerótica/patologia
7.
Cardiovasc Res ; 118(1): 141-155, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33135065

RESUMO

AIMS: During atherosclerosis, smooth muscle cells (SMCs) accumulate in the intima where they switch from a contractile to a synthetic phenotype. From porcine coronary artery, we isolated spindle-shaped (S) SMCs exhibiting features of the contractile phenotype and rhomboid (R) SMCs typical of the synthetic phenotype. S100A4 was identified as a marker of R-SMCs in vitro and intimal SMCs, in pig and man. S100A4 exhibits intra- and extracellular functions. In this study, we investigated the role of extracellular S100A4 in SMC phenotypic transition. METHODS AND RESULTS: S-SMCs were treated with oligomeric recombinant S100A4 (oS100A4), which induced nuclear factor (NF)-κB activation. Treatment of S-SMCs with oS100A4 in combination with platelet-derived growth factor (PDGF)-BB induced a complete SMC transition towards a pro-inflammatory R-phenotype associated with NF-κB activation, through toll-like receptor-4. RNA sequencing of cells treated with oS100A4/PDGF-BB revealed a strong up-regulation of pro-inflammatory genes and enrichment of transcription factor binding sites essential for SMC phenotypic transition. In a mouse model of established atherosclerosis, neutralization of extracellular S100A4 decreased area of atherosclerotic lesions, necrotic core, and CD68 expression and increased α-smooth muscle actin and smooth muscle myosin heavy chain expression. CONCLUSION: We suggest that the neutralization of extracellular S100A4 promotes the stabilization of atherosclerotic plaques. Extracellular S100A4 could be a new target to influence the evolution of atherosclerotic plaques.


Assuntos
Anticorpos Neutralizantes/farmacologia , Doenças da Aorta/tratamento farmacológico , Aterosclerose/tratamento farmacológico , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Placa Aterosclerótica , Proteína A4 de Ligação a Cálcio da Família S100/antagonistas & inibidores , Actinas/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Becaplermina/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Cadeias Pesadas de Miosina/metabolismo , Fenótipo , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100/farmacologia , Transdução de Sinais , Miosinas de Músculo Liso/metabolismo , Sus scrofa , Receptor 4 Toll-Like/metabolismo
8.
Front Physiol ; 12: 727338, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721060

RESUMO

Background: Intracranial aneurysms (IAs) result from abnormal enlargement of the arterial lumen. IAs are mostly quiescent and asymptomatic, but their rupture leads to severe brain damage or death. As the evolution of IAs is hard to predict and intricates medical decision, it is essential to improve our understanding of their pathophysiology. Wall shear stress (WSS) is proposed to influence IA growth and rupture. In this study, we investigated the effects of low and supra-high aneurysmal WSS on endothelial cells (ECs). Methods: Porcine arterial ECs were exposed for 48 h to defined levels of shear stress (2, 30, or 80 dyne/cm2) using an Ibidi flow apparatus. Immunostaining for CD31 or γ-cytoplasmic actin was performed to outline cell borders or to determine cell architecture. Geometry measurements (cell orientation, area, circularity and aspect ratio) were performed on confocal microscopy images. mRNA was extracted for RNAseq analysis. Results: ECs exposed to low or supra-high aneurysmal WSS were more circular and had a lower aspect ratio than cells exposed to physiological flow. Furthermore, they lost the alignment in the direction of flow observed under physiological conditions. The effects of low WSS on differential gene expression were stronger than those of supra-high WSS. Gene set enrichment analysis highlighted that extracellular matrix proteins, cytoskeletal proteins and more particularly the actin protein family were among the protein classes the most affected by shear stress. Interestingly, most genes showed an opposite regulation under both types of aneurysmal WSS. Immunostainings for γ-cytoplasmic actin suggested a different organization of this cytoskeletal protein between ECs exposed to physiological and both types of aneurysmal WSS. Conclusion: Under both aneurysmal low and supra-high WSS the typical arterial EC morphology molds to a more spherical shape. Whereas low WSS down-regulates the expression of cytoskeletal-related proteins and up-regulates extracellular matrix proteins, supra-high WSS induces opposite changes in gene expression of these protein classes. The differential regulation in EC gene expression observed under various WSS translate into a different organization of the ECs' architecture. This adaptation of ECs to different aneurysmal WSS conditions may affect vascular remodeling in IAs.

9.
Cardiovasc Res ; 117(1): 29-42, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32282914

RESUMO

Endothelial cells (ECs) are sentinels of cardiovascular health. Their function is reduced by the presence of cardiovascular risk factors, and is regained once pathological stimuli are removed. In this European Society for Cardiology Position Paper, we describe endothelial dysfunction as a spectrum of phenotypic states and advocate further studies to determine the role of EC subtypes in cardiovascular disease. We conclude that there is no single ideal method for measurement of endothelial function. Techniques to measure coronary epicardial and micro-vascular function are well established but they are invasive, time-consuming, and expensive. Flow-mediated dilatation (FMD) of the brachial arteries provides a non-invasive alternative but is technically challenging and requires extensive training and standardization. We, therefore, propose that a consensus methodology for FMD is universally adopted to minimize technical variation between studies, and that reference FMD values are established for different populations of healthy individuals and patient groups. Newer techniques to measure endothelial function that are relatively easy to perform, such as finger plethysmography and the retinal flicker test, have the potential for increased clinical use provided a consensus is achieved on the measurement protocol used. We recommend further clinical studies to establish reference values for these techniques and to assess their ability to improve cardiovascular risk stratification. We advocate future studies to determine whether integration of endothelial function measurements with patient-specific epigenetic data and other biomarkers can enhance the stratification of patients for differential diagnosis, disease progression, and responses to therapy.


Assuntos
Doenças Cardiovasculares/diagnóstico , Técnicas de Diagnóstico Cardiovascular/normas , Endotélio Vascular/fisiopatologia , Vasodilatação , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/terapia , Consenso , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Fatores de Risco de Doenças Cardíacas , Humanos , Variações Dependentes do Observador , Fenótipo , Valor Preditivo dos Testes , Prognóstico , Reprodutibilidade dos Testes , Medição de Risco
10.
Transl Res ; 227: 75-88, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32711187

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most common hepatic disorder related to type 2 diabetes (T2D). The disease can evolve toward nonalcoholic steatohepatitis (NASH), a state of hepatic inflammation and fibrosis. There is presently no drug that effectively improves and/or prevents NAFLD/NASH/fibrosis. GLP-1 receptor agonists (GLP-1Ra) are effective in treating T2D. As with the endogenous gut incretins, GLP-1Ra potentiate glucose-induced insulin secretion. In addition, GLP-1Ra limit food intake and weight gain, additional beneficial properties in the context of obesity/insulin-resistance. Nevertheless, these pleiotropic effects of GLP-1Ra complicate the elucidation of their direct action on the liver. In the present study, we used the classical methionine-choline deficient (MCD) dietary model to investigate the potential direct hepatic actions of the GLP-1Ra liraglutide. A 4-week infusion of liraglutide (570 µg/kg/day) did not impact body weight, fat accretion or glycemic control in MCD-diet fed mice, confirming the suitability of this model for avoiding confounding factors. Liraglutide treatment did not prevent lipid deposition in the liver of MCD-fed mice but limited the accumulation of C16 and C24-ceramide/sphingomyelin species. In addition, liraglutide treatment alleviated hepatic inflammation (in particular accumulation of M1 pro-inflammatory macrophages) and initiation of fibrosis. Liraglutide also influenced the composition of gut microbiota induced by the MCD-diet. This included recovery of a normal Bacteroides proportion and, among the Erysipelotrichaceae family, a shift between Allobaculum and Turicibacter genera. In conclusion, liraglutide prevents accumulation of C16 and C24-ceramides/sphingomyelins species, inflammation and initiation of fibrosis in MCD-diet-fed mice liver, suggesting beneficial hepatic actions independent of weight loss and global hepatic steatosis.


Assuntos
Colina/administração & dosagem , Dieta , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Inflamação/prevenção & controle , Liraglutida/farmacologia , Fígado/efeitos dos fármacos , Metionina/administração & dosagem , Animais , Liraglutida/uso terapêutico , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico
11.
Cardiovasc Res ; 116(14): 2177-2184, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32750108

RESUMO

The COVID-19 pandemic is an unprecedented healthcare emergency causing mortality and illness across the world. Although primarily affecting the lungs, the SARS-CoV-2 virus also affects the cardiovascular system. In addition to cardiac effects, e.g. myocarditis, arrhythmias, and myocardial damage, the vasculature is affected in COVID-19, both directly by the SARS-CoV-2 virus, and indirectly as a result of a systemic inflammatory cytokine storm. This includes the role of the vascular endothelium in the recruitment of inflammatory leucocytes where they contribute to tissue damage and cytokine release, which are key drivers of acute respiratory distress syndrome (ARDS), in disseminated intravascular coagulation, and cardiovascular complications in COVID-19. There is also evidence linking endothelial cells (ECs) to SARS-CoV-2 infection including: (i) the expression and function of its receptor angiotensin-converting enzyme 2 (ACE2) in the vasculature; (ii) the prevalence of a Kawasaki disease-like syndrome (vasculitis) in COVID-19; and (iii) evidence of EC infection with SARS-CoV-2 in patients with fatal COVID-19. Here, the Working Group on Atherosclerosis and Vascular Biology together with the Council of Basic Cardiovascular Science of the European Society of Cardiology provide a Position Statement on the importance of the endothelium in the underlying pathophysiology behind the clinical presentation in COVID-19 and identify key questions for future research to address. We propose that endothelial biomarkers and tests of function (e.g. flow-mediated dilatation) should be evaluated for their usefulness in the risk stratification of COVID-19 patients. A better understanding of the effects of SARS-CoV-2 on endothelial biology in both the micro- and macrovasculature is required, and endothelial function testing should be considered in the follow-up of convalescent COVID-19 patients for early detection of long-term cardiovascular complications.


Assuntos
COVID-19/virologia , Doenças Cardiovasculares/virologia , Endotélio Vascular/virologia , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/fisiopatologia , Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Citocinas/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Interações Hospedeiro-Patógeno , Humanos , Mediadores da Inflamação/metabolismo , Prognóstico , Medição de Risco , Fatores de Risco , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Internalização do Vírus , Tratamento Farmacológico da COVID-19
12.
Circ Res ; 127(7): 911-927, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32564697

RESUMO

RATIONALE: Vascular calcification, the formation of calcium phosphate crystals in the vessel wall, is mediated by vascular smooth muscle cells (VSMCs). However, the underlying molecular mechanisms remain elusive, precluding mechanism-based therapies. OBJECTIVE: Phenotypic switching denotes a loss of contractile proteins and an increase in migration and proliferation, whereby VSMCs are termed synthetic. We examined how VSMC phenotypic switching influences vascular calcification and the possible role of the uniquely calcium-dependent reactive oxygen species (ROS)-forming Nox5 (NADPH oxidase 5). METHODS AND RESULTS: In vitro cultures of synthetic VSMCs showed decreased expression of contractile markers CNN-1 (calponin 1), α-SMA (α-smooth muscle actin), and SM22-α (smooth muscle protein 22α) and an increase in synthetic marker S100A4 (S100 calcium binding protein A4) compared with contractile VSMCs. This was associated with increased calcification of synthetic cells in response to high extracellular Ca2+. Phenotypic switching was accompanied by increased levels of ROS and Ca2+-dependent Nox5 in synthetic VSMCs. Nox5 itself regulated VSMC phenotype as siRNA knockdown of Nox5 increased contractile marker expression and decreased calcification, while overexpression of Nox5 decreased contractile marker expression. ROS production in synthetic VSMCs was cytosolic Ca2+-dependent, in line with it being mediated by Nox5. Treatment of VSMCs with Ca2+ loaded extracellular vesicles (EVs) lead to an increase in cytosolic Ca2+. Inhibiting EV endocytosis with dynasore blocked the increase in cytosolic Ca2+ and VSMC calcification. Increased ROS production resulted in increased EV release and decreased phagocytosis by VSMCs. CONCLUSIONS: We show here that contractile VSMCs are resistant to calcification and identify Nox5 as a key regulator of VSMC phenotypic switching. Additionally, we describe a new mechanism of Ca2+ uptake via EVs and show that Ca2+ induces ROS production in VSMCs via Nox5. ROS production is required for release of EVs, which promote calcification. Identifying molecular pathways that control Nox5 and VSMC-derived EVs provides potential targets to modulate vascular remodeling and calcification in the context of mineral imbalance. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Movimento Celular , Proliferação de Células , Vesículas Extracelulares/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , NADPH Oxidase 5/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Calcificação Vascular/enzimologia , Idoso , Idoso de 80 Anos ou mais , Animais , Células Cultivadas , Vesículas Extracelulares/genética , Vesículas Extracelulares/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , NADPH Oxidase 5/genética , Fagocitose , Fenótipo , Transdução de Sinais , Sus scrofa , Calcificação Vascular/genética , Calcificação Vascular/patologia
13.
Cells ; 9(6)2020 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-32575851

RESUMO

Mesenchymal stromal cells (MSCs) were obtained from human bone marrow and amplified in cultures supplemented with human platelet lysate. Once semi-confluent, cells were seeded in solid collagen scaffolds that were rapidly colonized by the cells generating a 3D cell scaffold. Here, they acquired a myofibroblast phenotype and when exposed to appropriate chemical stimulus, developed tension and cell shortening, similar to those of striated and smooth muscle cells. Myofibroblasts contained a molecular motor-the non-muscle myosin type IIA (NMMIIA) whose crossbridge (CB) kinetics are dramatically slow compared with striated and smooth muscle myosins. Huxley's equations were used to determine the molecular mechanical properties of NMMIIA. Thank to the great number of NMMIIA molecules, we determined the statistical mechanics (SM) of MSCs, using the grand canonical ensemble which made it possible to calculate various thermodynamic entities such as the chemical affinity, statistical entropy, internal energy, thermodynamic flow, thermodynamic force, and entropy production rate. The linear relationship observed between the thermodynamic force and the thermodynamic flow allowed to establish that MSC-laden in collagen scaffolds were in a near-equilibrium stationary state (affinity ≪ RT), MSCs were also seeded in solid collagen scaffolds functionalized with the tripeptide Arg-Gly-Asp (RGD). This induced major changes in NMMIIA SM particularly by increasing the rate of entropy production. In conclusion, collagen scaffolds laden with MSCs can be viewed as a non-muscle contractile bioengineered tissue operating in a near-equilibrium linear regime, whose SM could be substantially modified by the RGD peptide.


Assuntos
Colágeno/metabolismo , Células-Tronco Mesenquimais/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Alicerces Teciduais/química , Diferenciação Celular , Humanos , Oligopeptídeos , Termodinâmica
14.
PLoS One ; 14(10): e0222683, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31574082

RESUMO

Mesenchymal stem cells (MSCs) were obtained from human bone marrow and amplified in cultures supplemented with human platelet lysate in order to generate myofibroblasts. When MSCs were seeded in solid collagen scaffolds, they differentiated into myofibroblasts that were observed to strongly bind to the substrate, forming a 3D cell scaffold network that developed tension and shortening after KCl stimulation. Moreover, MSC-laden scaffolds recapitulated the Frank-Starling mechanism so that active tension increased in response to increases in the initial length of the contractile system. This constituted a bioengineering tissue that exhibited the contractile properties observed in both striated and smooth muscles. By using the A. F. Huxley formalism, we determined the myosin crossbridge (CB) kinetics of attachment (f1) and detachment (g1 and g2), maximum myosin ATPase activity, molar myosin concentration, unitary CB force and maximum CB efficiency. CB kinetics were dramatically slow, characterizing the non-muscle myosin type IIA (NMMIIA) present in myofibroblasts. When MSCs were seeded in solid collagen scaffolds functionalized with Arg-Gly-Asp (RGD), contractility increased and CB kinetics were modified, whereas the unitary NMMIIA-CB force and maximum CB efficiency did not change. In conclusion, we provided a non-muscle bioengineering tissue whose molecular mechanical characteristics of NMMIIA were very close to those of a non-muscle contractile tissue such as the human placenta.


Assuntos
Músculo Liso/metabolismo , Cadeias Pesadas de Miosina/química , Oligopeptídeos/metabolismo , Peptídeos/metabolismo , Plaquetas/metabolismo , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Colágeno/química , Colágeno/metabolismo , Humanos , Cinética , Células-Tronco Mesenquimais/metabolismo , Contração Muscular/genética , Miofibroblastos/metabolismo , Cadeias Pesadas de Miosina/genética , Miosinas/química , Miosinas/metabolismo , Oligopeptídeos/química , Peptídeos/química , Cloreto de Potássio/farmacologia
15.
Cardiovasc Res ; 115(1): 10-19, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30534957

RESUMO

Dysregulated lipid metabolism induces an inflammatory and immune response leading to atherosclerosis. Conversely, inflammation may alter lipid metabolism. Recent treatment strategies in secondary prevention of atherosclerosis support beneficial effects of both anti-inflammatory and lipid-lowering therapies beyond current targets. There is a controversy about the possibility that anti-inflammatory effects of lipid-lowering therapy may be either independent or not of a decrease in low-density lipoprotein cholesterol. In this Position Paper, we critically interpret and integrate the results obtained in both experimental and clinical studies on anti-inflammatory actions of lipid-lowering therapy and the mechanisms involved. We highlight that: (i) besides decreasing cholesterol through different mechanisms, most lipid-lowering therapies share anti-inflammatory and immunomodulatory properties, and the anti-inflammatory response to lipid-lowering may be relevant to predict the effect of treatment, (ii) using surrogates for both lipid metabolism and inflammation as biomarkers or vascular inflammation imaging in future studies may contribute to a better understanding of the relative importance of different mechanisms of action, and (iii) comparative studies of further lipid lowering, anti-inflammation and a combination of both are crucial to identify effects that are specific or shared for each treatment strategy.


Assuntos
Anti-Inflamatórios/uso terapêutico , Aterosclerose/tratamento farmacológico , Dislipidemias/tratamento farmacológico , Hipolipemiantes/uso terapêutico , Mediadores da Inflamação/sangue , Inflamação/tratamento farmacológico , Lipídeos/sangue , Animais , Aterosclerose/sangue , Aterosclerose/epidemiologia , Aterosclerose/imunologia , Biomarcadores/sangue , Dislipidemias/sangue , Dislipidemias/epidemiologia , Dislipidemias/imunologia , Humanos , Inflamação/sangue , Inflamação/epidemiologia , Inflamação/imunologia , Inibidores de PCSK9 , Pró-Proteína Convertase 9/metabolismo , Fatores de Risco , Inibidores de Serina Proteinase/uso terapêutico , Resultado do Tratamento
16.
Cardiovasc Res ; 114(11): 1411-1421, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30016405

RESUMO

Modulation of vessel growth holds great promise for treatment of cardiovascular disease. Strategies to promote vascularization can potentially restore function in ischaemic tissues. On the other hand, plaque neovascularization has been shown to associate with vulnerable plaque phenotypes and adverse events. The current lack of clinical success in regulating vascularization illustrates the complexity of the vascularization process, which involves a delicate balance between pro- and anti-angiogenic regulators and effectors. This is compounded by limitations in the models used to study vascularization that do not reflect the eventual clinical target population. Nevertheless, there is a large body of evidence that validate the importance of angiogenesis as a therapeutic concept. The overall aim of this Position Paper of the ESC Working Group of Atherosclerosis and Vascular biology is to provide guidance for the next steps to be taken from pre-clinical studies on vascularization towards clinical application. To this end, the current state of knowledge in terms of therapeutic strategies for targeting vascularization in post-ischaemic disease is reviewed and discussed. A consensus statement is provided on how to optimize vascularization studies for the identification of suitable targets, the use of animal models of disease, and the analysis of novel delivery methods.


Assuntos
Doenças Cardiovasculares/terapia , Transplante de Células/métodos , Terapia Genética/métodos , Neovascularização Patológica , Neovascularização Fisiológica , Pesquisa Translacional Biomédica/tendências , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/metabolismo , Animais , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Vasos Sanguíneos/fisiopatologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/fisiopatologia , Difusão de Inovações , Modelos Animais de Doenças , Previsões , Regulação da Expressão Gênica , Humanos , Miocárdio/metabolismo , Miocárdio/patologia , Neovascularização Patológica/genética , Neovascularização Fisiológica/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Recuperação de Função Fisiológica , Transdução de Sinais
17.
Stem Cells Int ; 2018: 6134787, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29853916

RESUMO

Mesenchymal stromal stem cells (MSC) that reside in the bone marrow (BM) can be amplified in vitro. In 2-dimension (D) cultures, MSC exhibit a morphology similar to fibroblasts, are able to inhibit T lymphocyte and natural killer cell proliferation, and can be differentiated into adipocytes, chondrocytes, or osteoblasts if exposed to specific media. Here we show that medullar MSC cultured in 2D formed an adherent stroma of cells expressing well-organized microfilaments containing α-smooth muscle actin and nonmuscle myosin heavy chain IIA. MSC could be grown in 3D in collagen membranes generating a structure which, upon exposition to 50 mM KCl or to an alternating electric current, developed a contractile strength that averaged 34 and 45 µN/mm2, respectively. Such mechanical tension was similar in intensity and in duration to that of human placenta and was annihilated by isosorbide dinitrate or 2,3-butanedione monoxime. Membranes devoid of MSC did not exhibit a significant contractility. Moreover, MSC nested in collagen membranes were able to control T lymphocyte proliferation, and differentiated into adipocytes, chondrocytes, or osteoblasts. Our observations show that BM-derived MSC cultured in collagen membranes spontaneously differentiate into contractile myofibroblasts exhibiting unexpected properties in terms of cell differentiation potential and of immunomodulatory function.

18.
J Int Med Res ; 46(6): 2423-2435, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29923776

RESUMO

Objective This study was performed to explore the expression of α-smooth muscle actin (α-SMA) in the periodontal ligament (PDL) of young and adult rats during post-emergent tooth eruption in opposed and unopposed teeth at two time points: 3 and 15 days after antagonist loss. Methods Four-week-old (n = 20) and 22-week-old (n = 20) male Wistar rats were used. The right maxillary molar crowns were cut down. PDL samples were isolated from the first mandibular molars at two time points: 3 and 15 days after cut-down of the right maxillary molars. Quantitative reverse-transcription polymerase chain reaction and immunohistochemical staining were performed to detect differences in α-SMA expression in the PDL tissues of unopposed versus opposed molars. Results α-SMA was upregulated in the PDL of the unopposed molars in the 3-day group of young rats. The region around the root apex of the unopposed molars in this group exhibited strong immunostaining for α-SMA. The expression level and immunoreactivity of α-SMA did not differ in both time points in young controls and among all the adult groups. Conclusion α-SMA-positive myofibroblasts are implicated in post-emergent tooth eruption of unopposed molars of young animals.


Assuntos
Actinas/biossíntese , Miofibroblastos/metabolismo , Ligamento Periodontal/metabolismo , Erupção Dentária/fisiologia , Animais , Masculino , Modelos Animais , Ratos , Ratos Wistar
19.
Eur J Prev Cardiol ; 25(9): 948-955, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29759006

RESUMO

Dyslipidaemia and inflammation are closely interconnected in their contribution to atherosclerosis. In fact, low-density lipoprotein (LDL)-lowering drugs have anti-inflammatory effects. The Canakinumab Antiinflammatory Thrombosis Outcome Study (CANTOS) has shown that interleukin (IL)-1ß blockade reduces the incidence of cardiovascular events in patients with previous myocardial infarction and C-reactive protein levels >2 mg/L. These data confirm the connection between lipids and inflammation, as lipids activate the Nod-like receptor protein 3 inflammasome that leads to IL-1ß activation. LDL-lowering drugs are the foundation of cardiovascular prevention. Now, the CANTOS trial demonstrates that combining them with IL-1ß blockade further decreases the incidence of cardiovascular events. However, both therapies are not at the same level, given the large evidence showing that LDL-lowering drugs reduce cardiovascular risk as opposed to only one randomized trial of IL-1ß blockade. In addition, IL-1ß blockade has only been studied in patients with C-reactive protein >2 mg/L, while the benefit of LDL-lowering is not restricted to these patients. Also, lipid-lowering drugs are not harmful even at very low ranges of LDL, while anti-inflammatory therapies may confer a higher risk of developing fatal infections and sepsis. In the future, more clinical trials are needed to explore whether targeting other inflammatory molecules, both related and unrelated to the IL-1ß pathway, reduces the cardiovascular risk. In this regard, the ongoing trials with methotrexate and colchicine may clarify whether the cardiovascular benefit of IL-1ß blockade extends to other anti-inflammatory mechanisms. A positive result would represent a major change in the future treatment of atherosclerosis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Aterosclerose/tratamento farmacológico , Hipercolesterolemia/tratamento farmacológico , Mediadores da Inflamação/sangue , Inflamação/tratamento farmacológico , Lipoproteínas LDL/sangue , Anti-Inflamatórios/efeitos adversos , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais Humanizados , Aterosclerose/sangue , Aterosclerose/diagnóstico , Aterosclerose/epidemiologia , Biomarcadores/sangue , Ensaios Clínicos como Assunto , Medicina Baseada em Evidências , Humanos , Hipercolesterolemia/sangue , Hipercolesterolemia/diagnóstico , Hipercolesterolemia/epidemiologia , Inflamação/sangue , Inflamação/diagnóstico , Inflamação/epidemiologia , Fatores de Risco , Resultado do Tratamento
20.
Int J Cardiol ; 264: 1-6, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29776555

RESUMO

BACKGROUND: Culprit coronary atherosclerotic plaques (APs) from young sudden cardiac death (SCD) victims are mostly non-atheromatous, i.e., consisting of proliferative smooth muscle cells (SMCs). Coronary vasospasm has been advocated to explain plaque instability in the absence of thrombosis. Our aim was to characterize the SMC phenotype in the intima and media of coronary arteries from young SCD victims. METHODS AND RESULTS: A total of 38 coronary artery segments were studied: (a) 18 APs from young (≤40 years old) SCD patients, (b) 9 APs from old (>40 years old) SCD patients, (c) 11 non-atherosclerotic coronary arteries from young patients (≤40 years old). Markers of differentiated SMCs such as α-smooth muscle actin (α-SMA), smooth muscle myosin heavy chains (SMMHCs), and heavy-caldesmon (h-CaD), were assessed in intima and media by immunohistochemistry and quantified morphometrically. In the intima, their expression was higher in non-atherosclerotic arteries (44.37 ±â€¯3.03% for α-SMA, 14.21 ±â€¯2.01% for SMMHCs, 8.90 ±â€¯1.33% for h-CaD) and APs from young SCD victims (38.95 ±â€¯2.29% for α-SMA, 11.92 ±â€¯1.92% for SMMHCs, 8.93 ±â€¯1.12% for h-CaD) compared with old patients (22.01 ±â€¯3.56% for α-SMA, 6.39 ±â€¯0.7% for SMMHCs, 3.00 ±â€¯0.57% for h-CaD; all P statistically significant). The media of non-atherosclerotic arteries and APs from young SCD victims exhibited strong positivity for the differentiation markers unlike that of old patients. CONCLUSIONS: SMCs of coronary APs as well as from the underlying media from young SCD victims exhibit strong contractile phenotype. In the setting of critical stenosis, both intima and media SMC contractility might contribute to transient coronary spasm leading to myocardial ischemia and SCD.


Assuntos
Actinas/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Vasos Coronários , Morte Súbita Cardíaca , Cadeias Pesadas de Miosina/metabolismo , Placa Aterosclerótica , Adulto , Fatores Etários , Biomarcadores/metabolismo , Vasoespasmo Coronário/metabolismo , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Vasos Coronários/fisiopatologia , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/patologia , Feminino , Humanos , Imuno-Histoquímica , Itália , Masculino , Pessoa de Meia-Idade , Contração Muscular/fisiologia , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Placa Aterosclerótica/fisiopatologia , Túnica Íntima/metabolismo , Túnica Íntima/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...