Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 30(5): 1155-1173, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33382161

RESUMO

Freshwater unionid bivalves currently face severe anthropogenic challenges. Over 70% of species in the United States are threatened, endangered or extinct due to pollution, damming of waterways and overfishing. These species are notable for their unusual life history strategy, parasite-host co-evolution and biparental mitochondrial inheritance. Among this clade, the washboard mussel Megalonaias nervosa is one species that remains prevalent across the Southeastern United States, with robust population sizes. We have created a reference genome for M. nervosa to determine how genome content has evolved in the face of these widespread environmental challenges. We observe dynamic changes in genome content, with a burst of recent transposable element proliferation causing a 382 Mb expansion in genome content. Birth-death models suggest rapid expansions among gene families, with a mutation rate of 1.16 × 10-8 duplications per gene per generation. Cytochrome P450 gene families have experienced exceptional recent amplification beyond expectations based on genome-wide birth-death processes. These genes are associated with increased rates of amino acid changes, a signature of selection driving evolution of detox genes. Fitting evolutionary models of adaptation from standing genetic variation, we can compare adaptive potential across species and mutation types. The large population size in M. nervosa suggests a 4.7-fold advantage in the ability to adapt from standing genetic variation compared with a low diversity endemic E. hopetonensis. Estimates suggest that gene family evolution may offer an exceptional substrate of genetic variation in M. nervosa, with Psgv  = 0.185 compared with Psgv  = 0.067 for single nucleotide changes. Hence, we suggest that gene family evolution is a source of 'hopeful monsters' within the genome that may facilitate adaptation when selective pressures shift. These results suggest that gene family expansion is a key driver of adaptive evolution in this key species of freshwater Unionidae that is currently facing widespread environmental challenges. This work has clear implications for conservation genomics on freshwater bivalves as well as evolutionary theory. This genome represents a first step to facilitate reverse ecological genomics in Unionidae and identify the genetic underpinnings of phenotypic diversity.


Assuntos
Adaptação Fisiológica , Família Multigênica , Unionidae , Animais , Conservação dos Recursos Naturais , Pesqueiros , Água Doce , Sudeste dos Estados Unidos , Unionidae/genética
2.
Mol Ecol Resour ; 20(2): 404-414, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31677222

RESUMO

Environmental DNA (eDNA) sampling, the detection of species-specific genetic material in water samples, is an emerging tool for monitoring aquatic invasive species. Optimizing eDNA sampling protocols can be challenging because there is imperfect understanding of how each step of the protocol influences its sensitivity. This paper develops a probabilistic model that characterizes each step of an eDNA sampling protocol to evaluate the protocol's overall detection sensitivity for one sample. The model is then applied to analyse how changes over time made to the eDNA sampling protocol to detect bighead (BH) and silver carp (SC) eDNA have influenced its sensitivity, and hence interpretation of the results. The model shows that changes to the protocol have caused the sensitivity of the protocol to fluctuate. A more efficient extraction method in 2013, new species-specific markers with a qPCR assay in 2014, and a more efficient capture method in 2015 have improved the sensitivity, while switching to a larger elution volume in 2013 and a smaller sample volume in 2015 have reduced the sensitivity. Overall, the sensitivity of the current protocol is higher for BH eDNA detection and SC eDNA detection compared to the original protocol used from 2009 to 2012. The paper shows how this model of eDNA sampling can be used to evaluate the effect of proposed changes in an eDNA sampling and analysis protocol on the sensitivity of that protocol to help researchers optimize their design.


Assuntos
DNA Ambiental/genética , Modelos Estatísticos , Animais , Carpas/genética , Contaminação por DNA , Espécies Introduzidas , Viés de Seleção
3.
PeerJ ; 3: e926, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25945315

RESUMO

The barnacle Chthamalus fragilis is found along the US Atlantic seaboard historically from the Chesapeake Bay southward, and in the Gulf of Mexico. It appeared in New England circa 1900 coincident with warming temperatures, and is now a conspicuous member of rocky intertidal communities extending through the northern shore of Cape Cod, Massachusetts. The origin of northern C. fragilis is debated. It may have spread to New England from the northern end of its historic range through larval transport by ocean currents, possibly mediated by the construction of piers, marinas, and other anthropogenic structures that provided new hard substrate habitat. Alternatively, it may have been introduced by fouling on ships originating farther south in its historic distribution. Here we examine mitochondrial cytochrome c oxidase I sequence diversity and the distribution of mitochondrial haplotypes of C. fragilis from 11 localities ranging from Cape Cod, to Tampa Bay, Florida. We found significant genetic structure between northern and southern populations. Phylogenetic analysis revealed three well-supported reciprocally monophyletic haplogroups, including one haplogroup that is restricted to New England and Virginia populations. While the distances between clades do not suggest cryptic speciation, selection and dispersal barriers may be driving the observed structure. Our data are consistent with an expansion of C. fragilis from the northern end of its mid-19th century range into Massachusetts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...