Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 371(6533): 1056-1059, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33602865

RESUMO

Frontier orbitals determine fundamental molecular properties such as chemical reactivities. Although electron distributions of occupied orbitals can be imaged in momentum space by photoemission tomography, it has so far been impossible to follow the momentum-space dynamics of a molecular orbital in time, for example, through an excitation or a chemical reaction. Here, we combined time-resolved photoemission using high laser harmonics and a momentum microscope to establish a tomographic, femtosecond pump-probe experiment of unoccupied molecular orbitals. We measured the full momentum-space distribution of transiently excited electrons, connecting their excited-state dynamics to real-space excitation pathways. Because in molecules this distribution is closely linked to orbital shapes, our experiment may, in the future, offer the possibility of observing ultrafast electron motion in time and space.

2.
Phys Rev Lett ; 125(10): 106102, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32955317

RESUMO

We report the use of a surfactant molecule during the epitaxy of graphene on SiC(0001) that leads to the growth in an unconventional orientation, namely R0° rotation with respect to the SiC lattice. It yields a very high-quality single-layer graphene with a uniform orientation with respect to the substrate, on the wafer scale. We find an increased quality and homogeneity compared to the approach based on the use of a preoriented template to induce the unconventional orientation. Using spot profile analysis low-energy electron diffraction, angle-resolved photoelectron spectroscopy, and the normal incidence x-ray standing wave technique, we assess the crystalline quality and coverage of the graphene layer. Combined with the presence of a covalently bound graphene layer in the conventional orientation underneath, our surfactant-mediated growth offers an ideal platform to prepare epitaxial twisted bilayer graphene via intercalation.

3.
J Phys Condens Matter ; 30(50): 505002, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30468155

RESUMO

High resolution photoemission with synchrotron radiation was used to study the interface formation of a thin layer of C60 on 6H-SiC(0 0 0 1)-(3 × 3), characterized by protruding Si-tetramers. The results show that C60 is chemisorbed by orbital hybridization between the highest-occupied molecular orbital (HOMO) and the p z orbital of Si adatom at the apex of the tetramers. The covalent nature of the bonding was inferred from core level as well as valence band spectra. The Si 2p spectra reveal that a large fraction (at least 45%) of the Si adatoms remain unbound despite the reactive character of the associated dangling bonds. This is consistent with a model in which each C60 is attached to the substrate through a single covalent C60-Si bond. A binding energy shift of the core levels associated with sub-surface Si or C atoms indicates a decrease of the SiC band bending caused by a charge transfer from the C60 molecules to the substrate via the formation of donor-like interface states.

4.
Phys Rev Lett ; 116(12): 126805, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27058093

RESUMO

We investigate the structural and electronic properties of nitrogen-doped epitaxial monolayer graphene and quasifreestanding monolayer graphene on 6H-SiC(0001) by the normal incidence x-ray standing wave technique and by angle-resolved photoelectron spectroscopy supported by density functional theory simulations. With the location of various nitrogen species uniquely identified, we observe that for the same doping procedure, the graphene support, consisting of substrate and interface, strongly influences the structural as well as the electronic properties of the resulting doped graphene layer. Compared to epitaxial graphene, quasifreestanding graphene is found to contain fewer nitrogen dopants. However, this lack of dopants is compensated by the proximity of nitrogen atoms at the interface that yield a similar number of charge carriers in graphene.

5.
Phys Rev Lett ; 114(10): 106804, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25815955

RESUMO

We measure the adsorption height of hydrogen-intercalated quasifreestanding monolayer graphene on the (0001) face of 6H silicon carbide by the normal incidence x-ray standing wave technique. A density functional calculation for the full (6√3×6√3)-R30° unit cell, based on a van der Waals corrected exchange correlation functional, finds a purely physisorptive adsorption height in excellent agreement with experiments, a very low buckling of the graphene layer, a very homogeneous electron density at the interface, and the lowest known adsorption energy per atom for graphene on any substrate. A structural comparison to other graphenes suggests that hydrogen-intercalated graphene on 6H-SiC(0001) approaches ideal graphene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...