Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 8: 1565, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28955357

RESUMO

Strains of the Ralstonia solanacearum species complex in the phylotype IIB group are capable of causing Bacterial Wilt disease in potato and tomato at temperatures lower than 24°C. The capability of these strains to survive and to incite infection at temperatures colder than their normally tropical boundaries represents a threat to United States agriculture in temperate regions. In this work, we used a comparative genomics approach to identify orthologous genes linked to the lower temperature virulence phenotype. Six R. solanacearum cool virulent (CV) strains were compared to six strains non-pathogenic at low temperature (NPLT). CV strains can cause Bacterial Wilt symptoms at temperatures below 24°C, while NPLT cannot. Four R. solanacearum strains were sequenced for this work in order to complete the comparison. An orthologous genes comparison identified 44 genes present only in CV strains and 19 genes present only in NPLT strains. Gene annotation revealed a high percentage of genes compared with whole genomes in the transcriptional regulator and transport categories. A single nucleotide polymorphism (SNP) analysis identified 265 genes containing conserved non-synonymous SNPs in CV strains. Ten genes in the pathogenicity category were identified in this group. Comparisons of type 3 secretion system, type 6 secretion system (T6SS) clusters, and associated effectors did not indicate a correlation with the CV phenotype except for one T6SS VGR effector potentially associated with the CV phenotype. This is the first R. solanacearum genomic comparative analysis of multiple strains with different temperature related virulence. The candidate genes identified by this comparison are potential factors involved in virulence at low temperatures that need to be investigated. The high percentage of transcriptional regulators among the genes present only in CV strains supports the hypothesis that temperature dependent regulation of virulence genes explains the differential virulence phenotype at low temperatures. This comparison contributes to find new possible connections of temperature dependent virulence to the previously described complex regulatory system involving quorum-sensing, phenotype conversion (phcA), acyl-HSL production and responses to SA. It also added novel candidate T6SS effectors and useful detailed information about the T6SS in R. solanacearum.

2.
BMC Genomics ; 15: 280, 2014 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-24725348

RESUMO

BACKGROUND: Ralstonia solanacearum, the causal agent of bacterial wilt, is a genetically diverse bacterial plant pathogen present in tropical and subtropical regions of the world that infects more than 200 plant species, including economically important solanaceous crops. Most strains of R. solanacearum are only pathogenic at temperatures between 25 to 30°C with strains that can cause disease below 20°C considered a threat to agriculture in temperate areas. Identifying key molecular factors that distinguish strains virulent at cold temperatures from ones that are not is needed to develop effective management tools for this pathogen. We compared protein profiles of two strains virulent at low temperature and two strains not virulent at low temperature when incubated in the rhizosphere of tomato seedlings at 30 and 18°C using quantitative 2D DIGE gel methods. Spot intensities were quantified and compared, and differentially expressed proteins were sequenced and identified by mass spectrometry (MS/MS). RESULTS: Four hundred and eighteen (418) differentially expressed protein spots sequenced produced 101 unique proteins. The identified proteins were classified in the Gene Ontology biological processes categories of metabolism, cell processes, stress response, transport, secretion, motility, and virulence. Identified virulence factors included catalase (KatE), exoglucanase A (ChbA), drug efflux pump, and twitching motility porin (PilQ). Other proteins identified included two components of a putative type VI secretion system. We confirmed differential expression of 13 candidate genes using real time PCR techniques. Global regulators HrpB and HrpG also had temperature dependent expression when quantified by real time PCR. CONCLUSIONS: The putative involvement of the identified proteins in virulence at low temperature is discussed. The discovery of a functional type VI secretion system provides a new potential virulence mechanism to explore. The global regulators HrpG and HrpB, and the protein expression profiles identified suggest that virulence at low temperatures can be partially explained by differences in regulation of virulence factors present in all the strains.


Assuntos
Proteoma , Proteômica , Ralstonia solanacearum/metabolismo , Temperatura , Fatores de Virulência , Transporte Biológico , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Proteômica/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ralstonia solanacearum/genética , Estresse Fisiológico/genética , Virulência/genética , Fatores de Virulência/genética
3.
Genome Announc ; 2(1)2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24558246

RESUMO

Ralstonia solanacearum is the causal agent of bacterial wilt, one of the most destructive bacterial plant diseases. We present the whole-genome sequence of the strain P673 (phylotype IIB, sequevar 4). This strain is capable of producing disease in tomato plants at low temperatures. P673 has 311 unique genes.

4.
Phytopathology ; 102(2): 185-94, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21936660

RESUMO

Ralstonia solanacearum causes bacterial wilt on a wide range of plant hosts. Most strains of R. solanacearum are nonpathogenic below 20°C; however, Race 3 Biovar 2 (R3B2) strains are classified as quarantine pathogens because of their ability to infect crops, cause disease, and survive in temperate climates. We have identified race 1 biovar 1 Phylotype IIB Sequevar 4 strains present in Florida which were able to infect and produce wilt symptoms on potato and tomato at 18°C. Moreover they infected tomato plants at rates similar to strains belonging to R3B2. We determined that strains naturally nonpathogenic at 18°C were able to multiply, move in planta, and cause partial wilt when inoculated directly into the stem, suggesting that low temperature affects virulence of strains differently at early stages of infection. Bacterial growth in vitro was delayed at low temperatures, however it was not attenuated. Twitching motility observed on growing colonies was attenuated in nonpathogenic strains at 18°C, while not affected in the cool virulent ones. Using pilQ as a marker to evaluate the relative expression of the twitching activity of R. solanacearum strains, we confirmed that cool virulent strains maintained a similar level of pilQ expression at both temperatures, while in nonpathogenic strains pilQ was downregulated at 18°C.


Assuntos
Temperatura Baixa , Doenças das Plantas/microbiologia , Ralstonia solanacearum/fisiologia , Ralstonia solanacearum/patogenicidade , Solanum lycopersicum/microbiologia , Solanum tuberosum/microbiologia , Regulação para Baixo , Proteínas de Fímbrias/genética , Florida , Regulação Bacteriana da Expressão Gênica , Marcadores Genéticos/genética , Caules de Planta/microbiologia , Plântula/microbiologia , Virulência , Fatores de Virulência
5.
Mol Plant Pathol ; 9(4): 425-34, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18705858

RESUMO

The type III secretion system (T3SS) is required by plant pathogenic bacteria for the translocation of certain bacterial proteins to the cytoplasm of plant cells or secretion of some proteins to the apoplast. The T3SS of Erwinia amylovora, which causes fire blight of pear, apple and other rosaceous plants, secretes DspA/E, which is an indispensable pathogenicity factor. Several other proteins, including HrpN, a critical virulence factor, are also secreted by the T3SS. Using a CyaA reporter system, we demonstrated that DspA/E is translocated into the cells of Nicotiana tabacum'Xanthi'. To determine if other T3-secreted proteins are needed for translocation of DspA/E, we examined its translocation in several mutants of E. amylovora strain Ea321. DspA/E was translocated by both hrpW and hrpK mutants, although with some delay, indicating that these two proteins are dispensable in the translocation of DspA/E. Remarkably, translocation of DspA/E was essentially abolished in both hrpN and hrpJ mutants; however, secretion of DspA/E into medium was not affected in any of the mentioned mutants. In contrast to the more virulent strain Ea273, secretion of HrpN was abolished in a hrpJ mutant of strain Ea321. In addition, HrpN was weakly translocated into plant cytoplasm. These results suggest that HrpN plays a significant role in the translocation of DspA/E, and HrpJ affects the translocation of DspA/E by affecting secretion or stability of HrpN. Taken together, these results explain the critical importance of HrpN and HrpJ to the development of fire blight.


Assuntos
Proteínas da Membrana Bacteriana Externa/fisiologia , Proteínas de Bactérias/metabolismo , Erwinia amylovora/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Transporte Biológico , Erwinia amylovora/genética , Erwinia amylovora/patogenicidade , Nicotiana/citologia , Nicotiana/metabolismo , Nicotiana/microbiologia , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...