Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fluoresc ; 32(1): 293-305, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34783944

RESUMO

Fluorescent 3-[(E)-(2-phenylhydrazinylidene) methyl]-1H-indole (PHI) was synthesized by condensation of indole-3-carboxaldehyde and phenyl hydrazine in presence of acetic acid and ethanol and after spectral characterization used further to prepare its aqueous nano suspension by reprecipitation method using polyvinylpyrrolidone (PVP) as stabilizer. The average particle size of nano suspension measured by Dynamic Light Scattering (DLS) was found 77.5 nm while FESEM microphotograph showed spherical morphology. The blue shift in the absorption spectrum and stokes shifted fluorescence of nanosuspension of PHI compared to its monomer spectrum in dilute solution indicate formation of H-type aggregate by face to face overlapping of the molecules.The aggregation induced enhanced emission (AIEE) of PVP capped nanosuspension of PHI is increased appreciably by presence of aqueous solution of human serum albumin (HSA). A suitable mechanism of molecular binding interactions based on complex formation between PHI nanoaggregate and HSA through PVP is proposed. Fluorescence life time, zeta potential and particle size data of PHI nanoparticles (PHINPs) obtained in presence of different amounts of HSA are in support of molecular interactions leading to complex formation. The molecular docking studies showed that HSA and PVP capped PHINPs exhibit strong hydrogen bonding interaction. The fluorescence enhancement effect induced in PHI nanosuspension is used further to develop analytical method for quantitative estimation of HSA in aqueous biological sample solution.


Assuntos
Fluorescência , Indóis , Simulação de Acoplamento Molecular , Nanopartículas , Albumina Sérica Humana/análise , Humanos , Ligação de Hidrogênio , Indóis/química , Tamanho da Partícula , Povidona , Soluções , Suspensões , Água
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 183: 232-238, 2017 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-28454076

RESUMO

A simple carbazole based nanoprobe prepared by reprecipitation method shows selective sensing behavior for Fe3+ ion in aqueous medium. The prepared SDS capped 9-phenyl carbazole nanoparticles (9-PCzNPs) has narrower particle size distribution with an average diameter 35nm and zeta potential of -34.3mV predicted a good stability with negative surface charge over the nanoparticles. The Field Emission Scanning Electron Microscopy (FE-SEM) image showed cubic shape morphology of nanoparticles. The aqueous suspension of SDS capped 9-phenyl carbazole nanoparticles exhibited aggregation induced enhanced red shifted intense emission in comparison with the emission arising from dilute solution of 9-phenyl carbazole in DCM. The cation recognition test based on fluorescence change shows Fe3+ ion induce significant fluorescence quenching, however remaining cations responds negligibly. The obtained quenching data fit into Stern-Volmer relation in the concentration range of 0.0-1.0µg·mL-1 of Fe3+ ion solution and the detection limit is 0.0811µg·mL-1. The probable mechanism of fluorescence quenching of SDS capped 9-PCzNPs is because of adsorption of Fe3+ ion over the negatively charged surface of NPs through electrostatic interaction. Thus the proposed method was successfully applied for the detection of Fe3+ ion in environmental water sample.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...