Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 18(11): 2123-2137, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37802072

RESUMO

Primary carnitine deficiency (PCD) is an autosomal recessive monogenic disorder caused by mutations in SLC22A5. This gene encodes for OCTN2, which transports the essential metabolite carnitine into the cell. PCD patients suffer from muscular weakness and dilated cardiomyopathy. Two OCTN2-defective human induced pluripotent stem cell lines were generated, carrying a full OCTN2 knockout and a homozygous OCTN2 (N32S) loss-of-function mutation. OCTN2-defective genotypes showed lower force development and resting length in engineered heart tissue format compared with isogenic control. Force was sensitive to fatty acid-based media and associated with lipid accumulation, mitochondrial alteration, higher glucose uptake, and metabolic remodeling, replicating findings in animal models. The concordant results of OCTN2 (N32S) and -knockout emphasizes the relevance of OCTN2 for these findings. Importantly, genome-wide analysis and pharmacological inhibitor experiments identified ferroptosis, an iron- and lipid-dependent cell death pathway associated with fibroblast activation as a novel PCD cardiomyopathy disease mechanism.


Assuntos
Cardiomiopatias , Ferroptose , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Proteínas de Transporte de Cátions Orgânicos/genética , Membro 5 da Família 22 de Carreadores de Soluto/genética , Cardiomiopatias/genética , Lipídeos
2.
Methods Protoc ; 3(3)2020 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-32784848

RESUMO

Twenty years since their first derivation, human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have shown promise in disease modelling research, while their potential for cardiac repair is being investigated. However, low transfection efficiency is a barrier to wider realisation of the potential this model system has to offer. We endeavoured to produce a protocol for improved transfection of hPSC-CMs using the ViafectTM reagent by Promega. Through optimisation of four essential parameters: (i) serum supplementation, (ii) time between replating and transfection, (iii) reagent to DNA ratio and (iv) cell density, we were able to successfully transfect hPSC-CMs to ~95% efficiencies. Transfected hPSC-CMs retained high purity and structural integrity despite a mild reduction in viability, and preserved compatibility with phenotyping assays of hypertrophy. This protocol greatly adds value to the field by overcoming limited transfection efficiencies of hPSC-CMs in a simple and quick approach that ensures sustained expression of transfected genes for at least 14 days, opening new opportunities in mechanistic discovery for cardiac-related diseases.

3.
J Clin Med ; 9(8)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32718021

RESUMO

Hypertrophic cardiomyopathy (HCM) is a prevalent and untreatable cardiovascular disease with a highly complex clinical and genetic causation. HCM patients bearing similar sarcomeric mutations display variable clinical outcomes, implying the involvement of gene modifiers that regulate disease progression. As individuals exhibiting mutations in mitochondrial DNA (mtDNA) present cardiac phenotypes, the mitochondrial genome is a promising candidate to harbor gene modifiers of HCM. Herein, we sequenced the mtDNA of isogenic pluripotent stem cell-cardiomyocyte models of HCM focusing on two sarcomeric mutations. This approach was extended to unrelated patient families totaling 52 cell lines. By correlating cellular and clinical phenotypes with mtDNA sequencing, potentially HCM-protective or -aggravator mtDNA variants were identified. These novel mutations were mostly located in the non-coding control region of the mtDNA and did not overlap with those of other mitochondrial diseases. Analysis of unrelated patients highlighted family-specific mtDNA variants, while others were common in particular population haplogroups. Further validation of mtDNA variants as gene modifiers is warranted but limited by the technically challenging methods of editing the mitochondrial genome. Future molecular characterization of these mtDNA variants in the context of HCM may identify novel treatments and facilitate genetic screening in cardiomyopathy patients towards more efficient treatment options.

4.
J Mol Cell Cardiol ; 145: 43-53, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32531470

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a prevalent and complex cardiovascular condition. Despite being strongly associated with genetic alterations, wide variation of disease penetrance, expressivity and hallmarks of progression complicate treatment. We aimed to characterize different human isogenic cellular models of HCM bearing patient-relevant mutations to clarify genetic causation and disease mechanisms, hence facilitating the development of effective therapeutics. METHODS: We directly compared the p.ß-MHC-R453C and p.ACTC1-E99K HCM-associated mutations in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and their healthy isogenic counterparts, generated using CRISPR/Cas9 genome editing technology. By harnessing several state-of-the-art HCM phenotyping techniques, these mutations were investigated to identify similarities and differences in disease progression and hypertrophic signaling pathways, towards establishing potential targets for pharmacological treatment. CRISPR/Cas9 knock-in of the genetically-encoded calcium indicator R-GECO1.0 to the AAVS1 locus into these disease models resulted in calcium reporter lines. RESULTS: Confocal line scan analysis identified calcium transient arrhythmias and intracellular calcium overload in both models. The use of optogenetics and 2D/3D contractility assays revealed opposing phenotypes in the two mutations. Gene expression analysis highlighted upregulation of CALM1, CASQ2 and CAMK2D, and downregulation of IRF8 in p.ß-MHC-R453C mutants, whereas the opposite changes were detected in p.ACTC1-E99K mutants. Contrasting profiles of nuclear translocation of NFATc1 and MEF2 between the two HCM models suggest differential hypertrophic signaling pathway activation. Calcium transient abnormalities were rescued with combination of dantrolene and ranolazine, whilst mavacamten reduced the hyper-contractile phenotype of p.ACTC1-E99K hiPSC-CMs. CONCLUSIONS: Our data show that hypercontractility and molecular signaling within HCM are not uniform between different gene mutations, suggesting that a 'one-size fits all' treatment underestimates the complexity of the disease. Understanding where the similarities (arrhythmogenesis, bioenergetics) and differences (contractility, molecular profile) lie will allow development of therapeutics that are directed towards common mechanisms or tailored to each disease variant, hence providing effective patient-specific therapy.


Assuntos
Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Hipertrófica/terapia , Modelos Cardiovasculares , Actinas/genética , Actinas/metabolismo , Arritmias Cardíacas/complicações , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Sequência de Bases , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Cálcio/metabolismo , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Linhagem Celular , Respiração Celular , Regulação da Expressão Gênica , Genes Reporter , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Optogenética , Fenótipo , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...